Effect of Alloying on Stacking Fault Energy of Gold from Simulation,

A. Goyal, Y. Li, A. Chernatynskiy, J. S. Jayashankar, M. C. Kautzky, S. B. Sinnott and S. R. Phillpot, Effect of alloying on stacking fault energy of gold from simulation, Computational Materials Science 188, 110236 (2021).  https://doi.org/10.1016/j.commatsci.2020.110236

Abstract

The generalized stacking fault (SFE) energy curves of pure gold (Au) and its binary alloys with transition metals are determined from density functional theory (DFT). Alloy elements Ag, Al, Cu, Ni, Ti, Zr, Zn, In, Ga, Sn, Mn, Cd, Sn, Ta and Cr are substituted into Au at concentrations up to 4%. A comparison of various proposed methodologies to calculate SFEs is given. The intrinsic SFE decreases for all alloying elements from its value for pure Au, but SFE energies (both stable and unstable) vary strongly with the distance of the alloying element from the stacking fault region, and with alloy concentration. The compositional dependence of the SFE on the volume change associated with alloying element is determined. This work demonstrates that the SFE is strongly influenced by misfit strain caused by the alloying elements. Moreover, the computed generalized SFE curves provide information valuable to developing an understanding of the deformation behavior of Au and Au-alloys.

Leave a Reply

Your email address will not be published. Required fields are marked *