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Density Functional Theory (DFT) calculations are used to investigate electrical

deactivation after heat treatment in Tellurium (Te) doped Gallium Arsenide (GaAs)

semiconductors, an effect that has been observed experimentally. DFT’s predictive capabilities

are explored in the generation of the phase diagram and free energy functionals of the

Zirconium-Hydride (Zr-H) system. In addition to providing insights into the Zr-H phase

diagram, the temperature dependence of the free energies of the various phases are important

inputs into mesoscale models of Zr-based clad.

GaAs is a III-V direct band gap semiconductor that, when doped with Te, becomes

n-type. Previously a decrease in electrical activation has been observed in the semiconductor

after annealing. In this work, charged defect formation energies have been calculated using

DFT. Additionally, the energy correction term compensating for the electrostatic interactions

between the defects and their periodic images has been studied and a systematic approach to

similar studies is recommended. The formation of Ga vacancies with charge -3, Te substitution

with As atoms with charge +1 and combinations of the two defects are found to be the

most energetically favorable. This work shows that the formation of the Ga vacancy and

Te-substitutional defect complexes are the most likely cause for electrical deactivation in

Te-doped GaAs.

Zr-alloys for nuclear fuel cladding are known to precipitate hydride phases during

operation. These precipitates can cause several issues including increased stresses due to
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lattice mismatches between the precipitate and the alloy and hydrogen embrittlement leading

to cracking and failure of the cladding. In order to predict the materials properties of the

cladding, the hydride phases must be accurately simulated. The thermodynamic stability

of phases in the Zr-H system was evaluated using DFT. Cluster expansion techniques

were employed to assess the stability of each phase over a range of concentrations at zero

temperature. Phonon contributions were calculated and combined with results of statistical

mechanical techniques calculating finite-temperature energetics to create free energy surfaces

for the ground states as a function of temperature and concentration. These free energy

surfaces can be employed by mesoscale modeling techniques to more accurately calculate

microstructure and material properties of the cladding.
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CHAPTER 1
INTRODUCTION

With the advancement of computing power in the last 100 years, it has become

commonplace for industry and academia to employ computational models for the prediction

of materials properties and to further understand physical processes. Models are used to

predict properties which can be difficult or dangerous to physically measure and, in some cases,

modeling can be faster and cheaper than experiments. However, it must be kept in mind that

modeling may not be as accurate as experimental approaches, due to issues such as imperfectly

described systems or the theory underlying the model being unable to accurately describe the

physics of the system. In this work density functional theory (DFT) is used to explore two

systems, for different purposes, to promote understanding of processes within those systems.

DFT is a quantum mechanical approach used to explore the electronic structure of

many-body systems. It can predict structural, mechanical, thermodynamic, transport,

electronic, optical, magnetic and chemical properties of materials. It can aid experimental

work in the analysis of a material’s behavior at an atomic level, or drive materials design. DFT

also serves as a foundation on which experiment and other computational methods can build

on.

In this work, DFT is used to predict structural properties, including crystal structures and

defect structures, electronic properties, such as band gaps, and thermodynamic properties,

like formation energies of materials and phase stability. Specifically, DFT is used to evaluate

the formation energies of the Tellurium doped Gallium Arsenide charged defect system and to

calculate thermodynamic properties of the Zirconium-Hydride system, and to generate Gibbs

free energy surfaces which can be used to fit free energy functionals for use with mesoscale

modeling techniques and generate phase diagrams.

1.1 Tellurium Doped Gallium Arsenide

Gallium Arsenide (GaAs) is a III-V compound semiconductor. It has applications in

infrared light-emitting diodes (IR LED), field-effect transistors (FETs), integrated circuits (ICs),
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Table 1-1. Band gap energy and type, electron mobility, thermal conductivity and dielectric
constant at room temperature for Si and GaAs.

Property Unit Si GaAs
Band gap energy [9] eV 1.11 1.44
Band gap type [9] - Indirect Direct
Electron mobility [9] cm2 V −1s−1 1900 9000
Hole mobility [9] cm2 V −1s−1 500 500
Thermal conductivity
[9]

mW cm−1 ·K−1 1240 560

Static Dielectric
constant

- 11.9 [9] 12.85 [10]

solar cells and laser diodes. It has high electron mobility, a 1.44 eV direct band gap, low noise,

and a wide operating temperature range. Properties of GaAs are compared to Silicon (Si) in

Table 1-1. High electron mobility means GaAs can function at GHz frequencies, enabling use

in high voltage power ICs. A direct band gap implies the semiconductor can emit light with

high efficiency through radiative recombination. The width of the band gap also contributes to

high thermal stability and resistance to radiation damage. The largest disadvantage of GaAs is

that Gallium (Ga) is rare and does not occur in elemental form, but has to be extracted from

minerals, causing a high cost of production.

Semiconductors are commonly doped in order to control electrical properties. Doping is

the introduction of an impurity during the production of the material, creating an extrinsic

semiconductor. An intrinsic semiconductor at thermal equilibrium will have an equal number of

charge carriers, electrons (n) and holes (p). The introduction of an impurity will change carrier

concentration from:

n = p = ni (1-1)

where ni is the intrinsic concentration of electrons in the material, to:

n0 · p0 = n2
i (1-2)

where n0 and p0 are the concentrations of electrons and holes, respectively, in the doped

material. Due to the increase in carrier concentration, the conductivity of the semiconductor
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Figure 1-1. Semiconductor energy band diagrams. A) Intrinsic, B) n-type and C) p-type.

Figure 1-2. Electronic configuration of valence shells for Ga, As and Te atoms.

increases, and energy states within the band gap are allowed. In n-type semiconductors these

are known as donor states, and in p-type as acceptor states, see Figure 1-1. Dopants that

donate an electron create states near the conduction band, shifting the Fermi energy from

the midpoint between the valence band and conduction band in an intrinsic semiconductor,

at 0 K, closer to the conduction band. Dopants that accept electrons create states near the

valence band, shifting the Fermi energy towards the valence band. Gallium (Ga) is a group III

atoms, with 31 electrons in total and three in the 4s24p1 subshells, Figure 1-2. Arsenic (As) is

a group V atom with 33 electrons in total and five valence electrons in the 4s24p3 subshells.

In the intrinsic case, Ga shares its three valence electrons with the five from As, averaging to

four bonds per atom. Tellurium (Te) is a group VI atom with 52 electrons. It has 6 valence

electrons which occupy the 5s25p4 subshells with two electrons missing from the 5p shell.

When Tellurium (Te) is introduced as a dopant to GaAs it brings an excess of electrons,

causing Te-doped GaAs to become an n-type semiconductor with a negative charge. The
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excess electrons increase the carrier concentration, which increases the conductivity of the

semiconductor. However, carrier concentration is limited by the formation of compensating

defects which also decreases carrier mobility [11]. In n-doped GaAs, the carrier concentration is

generally limited to the mid-1018 cm−3 range [12]. Te-doped GaAs has also been observed to

undergo electrical deactivation after heat treatment [13]. Activation is the process of applying

a heat treatment to a doped semiconductor in order to obtain desired electronic properties.

The thermal energy creates vacancies in the material which facilitate the movement of the

dopant species to substitutional positions [13]. However, in Te-doped GaAs the concentration

of electrons decreases after heat treatment.

The mechanism behind electrical deactivation in Te-doped GaAs is generally thought

to be the formation of Ga vacancy and Te substitution on As pairs [12]. By understanding

the mechanisms which cause compensation and electrical deactivation it may be possible

to suppress the concentration of the compensating defects, thus increasing the carrier

concentration and conductivity without loss of mobility. This requires the intrinsic and

extrinsic defects in the semiconductor material to be identified at an atomic scale. In this work,

charged defects in Te-doped GaAs have been studied in a systematic manner with DFT to

identify these mechanisms. In addition, a workflow for simulating charged defects in materials

with DFT has been developed.

1.2 Thermodynamics of the Zirconium-Hydride System

Zirconium (Zr) alloys are commonly used in light water nuclear reactors (LWR) as fuel

cladding as they have a low thermal neutron capture cross-section and act as a moderator [7].

Within a LWR, the fuel clad acts as a barrier between the fuel and coolant water and prevents

fission product release into the reactor vessel. Zr-alloy in contact with water oxidizes and

produces Hydrogen (H2) gas which is then absorbed by the clad. Once the solubility limit of H

is reached, the Zr changes structure on an atomic scale to a Zirconium-hydride (Zr-H) phase.

The addition of H to an alloy degrades its strength, ductility, hardness, impact resistance and

fracture toughness. In Zr-alloys it creates hydride precipitates, see Figure 1-3, which can cause
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Figure 1-3. Area of high hydride concentration in high-burnup ZIRLO™ cladding. [Used with
permission from Billone et al.[14]]

the clad to crack and fail. From a safety standpoint, preventing cracking or rupture is a priority

in the alloy design and must be considered in predicting the operational lifespan of fuel and

mechanical properties of the clad during and after use.

The performance of nuclear materials is frequently simulated on atomistic and engineering

scales. However, connecting these two scales is challenging. In recent years phase field

simulations have emerged as a mesoscale methodology with has the potential to bridge this

gap [15]. To calculate material performance accurately with phase field methods, the models

must be provided with data including the thermodynamic properties of the material from

experiments and/or atomistic simulations. The Zr-H system has been studied extensively in the

past by experimental techniques; however, disagreement about the phase diagram and stability

of the different phases still exist. Figure 1-4 is a comparison of Zr-H phase diagrams compiled

by Okamoto et al. [1] which shows an example of the uncertainty in the stability of the δ and

ϵ-Zr-H phases. The phase diagram by Zuzek et al. [2] shows a region of the δ-phase from

approximately 1.5 to 2 weight percent (wt.%) H, a small, two phase δ-ϵ region, and a ϵ-phase

region above 2 wt.% H. Dupin et al.s’ [3] phase diagram also shows the δ-phase from 1.5 to

2 wt.% H, but does not have a two-phase region and only shows the ϵ-phase as stable from 2
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wt.% H above 300 K. Setoyama et al. [4] shows the δ-phase to be stable from approximately

1.6 wt.% H above 300 K, and no ϵ-phase.

Figure 1-4. Comparison by Okamoto et al. [1] of Zirconium-Hydrogen phase diagrams
published in Zuzek et al. [2], Dupin et al. [3] and Setoyama et al. [4].[Used with
permission from Okamoto et al.[1]].

Understanding and accurately modeling this region of the Zr-H phase diagram is of critical

importance as the most commonly observed experimental phase is δ-ZrH1.667. H also thermally

diffuses towards lower temperature regions, causing a higher concentration towards the outer

rim of the cladding [7, 16]. It is expected that a range of Zr-H concentrations within 1.5 to

2 wt.% H will be observed. Additionally, the phase diagrams in Figure 1-4 do not contain the

metastable γ-ZrH phase or the more recently observed ζ-Zr2H [6]. DFT will be used to predict

the atomic structure of Zr and Zr-H over a range of temperatures and compositions, which will
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be used to fit a free energy functionals that can be utilized by mesoscale models to predict the

behavior of nuclear fuel cladding.
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CHAPTER 2
COMPUTATIONAL METHODS

Density functional theory (DFT) is a quantum mechanical approach used to explore

the electronic structure of many-body systems. In quantum mechanics, the many-body

wavefunction, Ψ, contains all possible information for every configuration of electrons and

nuclei in a system and the many-body Schrödinger wave-equation predicts the behaviour

the system in terms of the wavefunction. DFT calculates an approximate solution to the

Schrödinger equation using the Hohenburg-Kohn theorems [17] and solving the Kohn-Sham

equations [18]. The Vienna Ab initio Simulation Package (VASP) [19–21] is the program used

herein for DFT calculations.

In Section 2.1, the approach by which DFT is used to evaluate the formation energies

of charged defect systems is described. Section 2.2 explores how DFT can be expanded upon

to calculate thermodynamic properties, generate phase diagrams and feed into mesoscale

modeling techniques.

2.1 Charged Defect Calculations

Calculating defect formation energies with DFT is achieved by simulating a perfect

supercell, a supercell with the defect, and calculating the chemical potentials, µi, of each

of the atomic species, i. In a charge neutral calculation, VASP will apply a homogeneous

background charge if the number of electrons in the cell is inconsistent with the number

derived from the valence of the atoms, so that the overall charge remains neutral. However,

it is possible to directly set the number of electrons in the system and therefore change the

charge of the system. With this method, also known as a supercell approach, it is possible

to calculate charged defect formation energies, outlined in Section 2.1.1. However, one issue

with the supercell approach is the interaction of charged defects with their periodic images,

which includes overlapping wavefunctions, elastic interactions and electrostatic interactions.

Section 2.1.3 outlines the Freysoldt, Neugebauer and Van de Walle (FNV) methodology [22]

for calculating a correction term to remove the electrostatic interactions.
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2.1.1 Formation Energies

The formation energy of a defect X in a charge state q is calculated as follows [22, 23]:

Eform[X
q] = Etot[X

q]− Etot[bulk
0]−

∑
i

niµi + qEF + Ecorr (2-1)

Where Etot[X
q] is the total internal energy of the supercell with the defect from VASP, and

Etot[bulk
0] is the total internal energy of the equivalent perfect supercell with a neutral charge.

ni is the number of atoms of species i added (ni > 0) or subtracted (ni < 0) in the defect

cell and µi is the chemical potential (see Section 2.1.2) of the atomic species. EF is the Fermi

energy with respect to the the vacuum of the perfect charge neutral structure. It is equal to

EF = EV BM + µe; µe is the Fermi level, with respect to the valance band maximum (VBM),

and is also known as the electron chemical potential. EV BM is the energy of the VBM with

respect to the vacuum. µe is bound by the energy of the band gap (0 ≤ µe ≤ Eg) and will

be varied so that each charge state will have a range of calculated defect formation energies.

Ecorr is the correction term to account for the periodicity inherent in DFT calculations

calculated by the FNV method (Section 2.1.3).

2.1.2 Chemical Potential and Gibbs Free Energy

From Equation 2-1, the formation energy of a charged defect in a compound is a function

of the electron chemical potentials of the atomic species (µi), which varies according to the

physical growth conditions of the compound. The chemical potential of a substance (µ) can be

defined as the chemical energy inherent in one mole of the substance [24]:

µ =
UC

N
(2-2)

Where UC is the chemical energy and N is the number of moles of a substance. The internal

energy of a system comprises of its thermal (UT ), mechanical (UM) and chemical (UC)

energies. Combining the first and second laws of thermodynamics the internal energy is
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expressed as a function of entropy (S), volume (V) and number of moles of the substance [24]:

U = UT + UM + UC = TS − PV + µN (2-3)

Where T is the temperature, and P is the pressure.

The Gibbs free energy function is defined as:

G ≡ U + PV − TS (2-4)

By rearranging and combining Equations 2-3 and 2-4 the relation between the chemical

potential and Gibbs free energy can be expressed as:

µ =
G

N
(2-5)

Using the relation in Equation 2-5, it is a simple process to calculate the chemical

potential of an atomic species using VASP. In a unary system, after relaxing a supercell VASP

outputs a total internal energy of the ground state of the supercell. As VASP simulations are

run with a constant temperature, T = 0 K, and pressure, P = 0 Pa, the TS and PV terms

in Equation 2-3 and 2-4 become zero. The Gibbs free energy, G, becomes equal to the internal

energy, U , so the chemical potential of an atomic species is the energy divided by the number

of moles of substance. In the unary case, as there is only one species of atom, the energy

outputted by VASP is divided by the total number of atoms in the supercell to find the bulk

chemical potential of the species (µi(bulk)).

Extending Equation 2-5 to systems with i-components, the Gibbs free energy becomes

[25]:

G = U = µN = µ1N1 + µ2N2 + µ3N3 + · · ·+ µiNi (2-6)

Where µi is the chemical potential of the atomic species i, Ni is the number of moles of that

component and N = N1 +N2 + . . . Ni. If the mole fraction of each atomic species is xi = Ni

N

and x1+x2+ . . . xi = 1, the internal energy of an i-component system in terms of the chemical
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potentials for each atomic species becomes [25] :

G = µ1x1 + µ2x2 + · · ·+ µixi (2-7)

This is commonly referred to as the molar Gibbs free energy, Gibbs free energy or just the

Gibbs energy of a system [24]; however, in this work the notation of EAB(bulk) will be used. In

literature it is also commonly notated as µAB [22, 23, 26–30]. Similar to the chemical potential

of an atomic species, µi(bulk), to calculate the Gibbs energy of a compound, using VASP the

total internal energy of the compound is divided by the total number of formula units in the

simulated cell.

Experimentally, chemical potentials are controlled by growth conditions and can be

considered as variables. In an excess of atom A, a precipitate of bulk A may form and the

chemical potential of A cannot exceed the chemical potential of the bulk; µA ≤ µA(bulk).

Similarly, the same bounds can be applied to any other atomic species in a compound,

e.g. µB ≤ µB(bulk) [23]. These are the upper bounds on the chemical potentials. The

chemical potentials of any impurity atoms in the system are also treated in this same manner.

Additionally, the internal energy of the compound is proportional to it’s heat of formation plus

the maximum chemical potentials of it’s constituents [31]:

EAB(bulk) = µA(bulk) + µB(bulk) +∆H(AB) (2-8)

Where ∆H < 0 for a stable compound. With the upper bounds and Equation 2-8, the lower

bounds can be defined as:

µA ≥ µA(bulk) +∆H(AB) (2-9)

µB ≥ µB(bulk) +∆H(AB) (2-10)

Table 2-1 shows how the upper and lower bounds of a binary AB compound can be calculated

for either A-rich or B-rich growth conditions. In the case of GaAs, at the As-rich limit

µAs = µAs(bulk) and µGa = µGa(bulk) + ∆H(GaAs). For the Ga-rich limit µGa = µGa(bulk)
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and µAs = µAs(bulk) − ∆H(GaAs). However, in this work µGa and µAs will be equal to the

midpoint of their respective range of chemical potentials so that the growth conditions are for

the stoichiometric case. The chemical potential for Te will be treated as µTe = µTe(bulk).

Table 2-1. Upper and lower bounds on chemical potential of atomic species in a binary
compound

Environment µA µB

A-rich µA(bulk) µB(bulk) +∆H(AB)
B-rich µA(bulk) +∆H(AB) µB(bulk)

2.1.3 FNV Correction for Formation Energies

The Freysoldt, Neugebauer and Van de Walle (FNV) method [5] for calculating the

correction term is based on the electrostatic potentials generated by DFT calculations. The

following discussion of their method follows closely to their published material [5, 32] and can

be reduced to two general steps taken after calculating the charge neutral defect:

1. Introduction of a charge, q, to a defect state, ψd, by adding or subtracting electrons.
Electrons screen the introduced charge, changing the electrostatic potential.

2. Impose an artificial periodicity and remove divergence of the potential with a compensating
background.

In step one, the unscreened charge density from the introduced charge is:

qd(r) = q|ψd(r)|2 (2-11)

Where r is the distance from the localized charge. The defect-induced potential is the

difference between the electrostatic potential, V els, calculated by VASP of charged defect and

that of the perfect bulk reference structure:

V = V els(charged defect)− V els(reference) (2-12)

Potential, V , can also be described in terms of a short-range and long-range term:

V = V lr + V sr (2-13)
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The long-range potential, V lr, assuming that microscopic screening effects, also known as local

field effects, can be ignored as they generally ’average out’[5], is given by:

V lr(r) =

∫
d3r

qmodel(r′)

ϵ|r − r′|
(2-14)

where qmodel is a Gaussian model of charge density with a width of one Bohr (0.53 Å),

Equation 2-15. Use of this model assumes that the defect effects are strongly localized.

qmodel = qd(r) = qxNγe
−r/γ + q(1− x)Nβe

−r2/β2 (2-15)

Where Nγ and Nβ are normalization constants.

With a large enough supercell size and appropriate choice of qmodel, the V sr term will

decay to zero within the supercell and remain the same for all the periodic defects. The

short-range interaction energy between the defect and the background charge, n = −q/Ω, is

written as: ∫
d3nV sr(r) = −q

[
1

Ω

∫
d3rV sr(r)

]
(2-16)

where Ω is the unit cell volume.

A Fourier transform is applied to the long-range potential and background potential,

Equation 2-17, so that the long-range interaction energy can be estimated from the screened

Mandelung energy of point charges [33]. The long-range interaction energy for spherical charge

densities in reciprocal space becomes Equation 2-18.

Ṽ lr(G ̸= 0) =
4πqmodel(G)

ϵ|G|2
and Ṽ lr(0) = 0 (2-17)

Elat[qmodel] =
2π

ϵΩ

|G|≤Gcut∑
G ̸=0

{qmodel(|G|)}2

|G|2
− 1

πϵ

∫ Gcut

0

dg{qmodel(g)}2 (2-18)

Where ϵ is the dielectric constant of the material and G runs over the reciprocal lattice

vectors. In Equation 2-18 the first term is the energy of the periodic array and the second term

is the unscreened electrostatic energy of qmodel interacting with itself.
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The formation energy is now modified to:

Eform[X
q] = Eform[X

0] + ∆Eiso(q) + Elat[qmodel]− q∆ (2-19)

where Eform[X
0] is the formation of energy of the charge neutral defect and ∆Eiso(q) is the

difference between the formation energy of a charged defect and ∆Eiso(q). ∆ is the alignment

term from the short-range potential:

V sr = Ṽ els(charged defect)− Ṽ els(neutral)− Ṽ lr +∆V (2-20)

∆V is the alignment constant, which is set by the user so that V sr decays to zero between the

periodic images of the defect.

Up to this point the reference state has been the charge neutral defect. Freysoldt et al.

[5, 32] states that the reference can be changed to the perfect neutral bulk material due to

a neutral defect having no long-range Coulomb potential. Hence the formation energy of a

charged defect becomes:

Eform[X
q] = Etot[X

q]− Etot[bulk
0]− Elat[qmodel] + q∆V −

∑
i

niµi + qEF (2-21)

which is analogous to Equation 2-1, with Elat[qmodel] + q∆V being the correction term.

Freysoldt et al. [5] developed the sxdefectalign code, which employs the scheme outlined

above, to calculate the correction term. As electrostatic potentials are generated when

undertaking DFT calculations, no additional first principles calculations are required to

determine the correction term. sxdefectalign can calculate the correction from the potential

files of the charged defect supercell, the perfect bulk supercell, and the dielectric constant with

minimal input from the user. It makes the method of calculating charged defect formation

energies more robust and simplifies the analysis.

2.1.4 Charge State Transition Levels

The addition of a charge carrier, for example, a dopant, creates new levels either near the

edges of the band gap or within the gap. The charge state, q1, of a defect in an equilibrated
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configuration can be changed by processes such as optical excitation or the application of

an electric field. Electrons potentially added or removed to/from the valence band to one of

the new levels created by the dopant or the conduction band, and the material transitions to

a new charge state, q2. The levels calculated by DFT methods are not directly comparable

to experimental results, and so the total energies of the defect configurations before and

after transition are calculated instead. This is known as the thermodynamic transition level,

ϵ(q1/q2), and is calculated using the following [22]:

ϵ(q1/q2) =
Eform(X

q1 ;µe = 0)− Eform(X
q2 ;µe = 0)

q2 − q1
(2-22)

Where Eform(X
qi ;µe = 0) is the formation energy of defect X in charge state qi and the

Fermi level µe at the valence band maximum.

From this equation, if the Fermi level is below ϵ(q1/q2) the charge state q1 will be stable,

and if above q2 will be stable. The position of ϵ(q1/q2) also indicates if a defect is a shallow or

deep level defect. Shallow defect levels occur near the valence band maximum or conduction

band minimum and are more likely to be thermally ionized at room temperature, that is, the

energy difference with the valence band or conduction band is within a few kbT , approximately

0.025 to 0.1 eV. Deep level defects occur near the middle of the band gap and are not likely to

be thermally ionized at room temperature, i.e. the energy required to move electrons from the

valence band, or to the conduction band, is much larger than kbT .

2.2 Calculation of Thermodynamic Properties

It is well established that the properties of the materials of a system at 0 K can be

calculated from first principles techniques. However, simulating a system at finite temperatures

with first principles techniques is challenging. Currently, thermal density functional theory [34]

is an emerging area of study under active development, but other methods can be used in

the meantime. In this work, the finite temperature energetics of the system is calculated by

expanding upon DFT calculations using simpler models such as Monte Carlo (MC) techniques

and the finite displacement method (FDM).
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When studying thermodynamic stability, the Helmholtz free energy, F , is reasonably easy

to calculate and will be explored in this work. F consists of configurational, electronic and

vibrational contributions which can be calculated separately. The method employed to calculate

the configurational thermodynamic properties is outlined by van de Walle [35] and consists of

three generalized steps:

1. The partition function of the system is reduced to a coarse-grained lattice model which
describes the possible configurational disorder of the system (The Ising model).

2. The energy of the system is parameterized with a simpler model to limit the number of
terms to be calculated by the coarse-grain partition function (Cluster Expansion).

3. The system is thermally equilibrated to obtain properties from statistical mechanical
techniques (Monte Carlo simulations).

These steps will be further described in Section 2.2.1-2.2.3, including descriptions of the

algorithms implemented in the ATAT package [36, 37], specifically the MAPS [35] and EMC2

codes [38].

To calculate the vibrational thermodynamics, the ground states from the cluster expansion

(CE) will be used in conjunction with the FDM to calculate the phonon thermal properties.

A description of the methodology as implemented by the Phonopy package [39] is outlined

in Section 2.2.4. The electronic contribution is generally assumed to be small and will not be

calculated as part of this work.

Once configurational and vibrational free energies have been calculated a free energy

functional can be fit for use in mesoscale modeling techniques. Figure 2-1 shows a simplified

workflow describing the steps required to generate the thermodynamic properties and at which

stages DFT, or other ab-initio methods, are used to generate data.

2.2.1 The Ising Model

To overcome the complexity of a large system or temperatures above 0 K, the description

of the system is simplified to an Ising model, which is frequently used for the calculation of

phase diagrams [40]. The partition function of a system is mapped onto the partition function
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Figure 2-1. Workflow for calculating thermodynamic properties from first principles
calculations. Initial input is in the green bubble, packages used to calculate data
are in orange rectangles, outputted data are in blue rhomboids and the final results
are indicated by the red bubble. 1) through 3) are the steps outlined to calculate
the configurational thermodynamic properties and 4) is the step to calculate
vibrational properties. Double headed arrows indicate that data from a package is
parsed into an ab-initio code, which then calculates the needed property, and then
is parsed back into the origin package.

of an Ising lattice and atom interactions are described through effective cluster interaction

(ECI) parameters.

Originally the Ising Hamiltonian was derived as a model of ferromagnetism in statistical

mechanics in which the magnetic dipole moments of atoms are represented with spins of

either +1 or -1. Generalizing the Ising model for a case with an arbitrary number and type

of interactions, each site in a parent lattice is represented by i, and the spin of the site as σi.

The vector σ contains the spin variables for each lattice site and is known as the configuration.
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Assuming the external magnetic field is zero the energy of a configuration is given by [40]:

H(σ) =
∑
α

Jασα (2-23)

Equation 2-23 is the Ising Hamiltonian, where α are a group of sites, or clusters, and σα is the

product of all the spins in the α-cluster. Jα is the effective interaction parameter for cluster α.

To calculate thermodynamic properties of an alloy, the spin variable σi now represents the

occupation of a site. That is if lattice site i is occupied by atomic species A then σi = +1. If

occupied by species B then σi = −1. In the ternary case, the spin variable can take the values

of +1, 0 or -1. The summation in Equation 2-23 is over all possible clusters in the lattice. If

a set of appropriate effective interactions, Jα, are known, the energy of stable structures as a

function of composition can be obtained.

A full derivation of the Ising model for alloys from the free energy partition function was

published by Ceder [40]. The key points of this derivation is that at 0 K each atom occupies a

site on an Ising lattice. The Ising lattice is not necessarily a Bravais lattice, but instead is a set

of possible lattice positions. Only substitutional processes can change the spin configuration at

non-zero temperatures. In an alloy, each configuration, σ, is subdivided into microstates, which

are partitioned into groups with the same configuration. The sum over of all the microstates

projects onto the same configuration on the Ising lattice with the connectivity between atoms

being taken into account rather than the exact spatial coordinates.

In practice, the Ising Hamiltonian is further truncated. It has been shown that including

only first and second nearest-neighbor interactions produces reasonably accurate phase

diagrams for the fcc and bcc lattices [41, 42]. Section 2.2.2 covers the cluster expansion (CE)

method employed by the MAPS code[36] to limit the number of terms.
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2.2.2 Cluster Expansion Formalism

The CE formalism utilizes the generalization of the Ising Hamiltonian in Equation 2-23.

The parameterization of the energy (per atom) is as follows:

E(σ) =
∑
α

mαJα

⟨∏
i∈β

σi

⟩
(2-24)

Where the sum is taken over all clusters α that are not equivalent by symmetry. The average is

taken over all clusters β that are equivalent to α by symmetry. Jα becomes the effective

cluster interaction (ECI) coefficient and mα is the multiplicity of the clusters that are

equivalent by symmetry to α.

The unknown parameters in the ECI are determined utilizing the structure inversion

method (SIM)[43], which fits the ECI to the energies of a number of configurations

calculated though first-principles methods. An initial CE consisting of all point clusters

and all nearest-neighbor pairs is constructed from density functional theory (DFT) calculations,

to which the initial ECI are fitted.

The greatest advantage to the CE formalism is that it converges quickly, generally

requiring approximately 10-20 ECIs, which corresponds to approximately 30-50 first principles

calculations of ordered structures. However, prior to automation in the ATAT program[36],

CE was largely a non-systematic trial and error process relying on researcher knowledge of

the system and intuition. van de Walle[35] proposed that this subjectivity could be overcome

by selectively choosing which clusters should be included in the CE and which configurations

should be used to calculate the unknown ECI. Sections 2.2.2.1 and 2.2.2.2 describe the

algorithms implemented in MAPS[36] to make these selections.

2.2.2.1 Effective cluster interaction

To determine the CE exactly would require an infinite number of ECIs. In practice, the

CE is approximated with a series truncated to a finite number of terms. With the energies of a

finite number of structures known, the number of ECI terms retained must maintain a balance

between too few terms, resulting in imprecisely predicted energies, and too many, causing
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overfitting. When overfitted, the CE may include clusters which actually have no physical

significance in the engineered material. This may also cause the CE to incorrectly predict the

energies of new structures.

Deciding if a cluster is a candidate to be included in the fit is achieved by assessing the

accuracy of the new fit. Mean squared error is not considered as a measure of the accuracy

of the CE as an ECI, Jβ, not included in the fit might be attributed to an ECI, Jα, which

was included in the fit. As in the case of when the product of all spins in the lattice sites of

cluster α (⟨
∏

i∈α(σi)
⟩) are correlated with the product of all spins in the lattice sites of cluster

β (⟨
∏

i∈β(σi)
⟩). Instead, the measure of the predictive power of a CE is evaluated with the

cross-validation score[44]:

(CV )2 = n−1

n∑
i=1

(
Ei − Ê(i)

)2 (2-25)

where n is the number of structures included in the fit, the energy of the structure i

calculated by first principles is Ei and the predicted value of the energy of structure i, from

a least-squares fit to the (n − 1) other structures, is Ê(i). A small CV score, on the order of

0.025 eV or smaller, is recommend for a well fitted CE by van de Walle et al. [45]

The CV score will decrease as the number of parameters fitted increases until a minimum

is reached. This is due to an increased number of degrees of freedom in the CE accounting for

energy variations. It has been shown that at this minimum the number of terms included in the

CE are optimal[46]. As more terms are added the CV will begin increasing, indicating that the

predictive power of the CE is deteriorating due to increased noise in the ECI.

Additionally, the CV is restricted to ’physically meaningful’ CEs, limiting the chance

that a sub-optimal ECI rising from statistical noise gives a smaller CV than the optimal ECI.

By ’physically meaningful’ van de Walle[35] applied the following restrictions for including a

cluster:

• All sub-clusters of the cluster must have already been included, which allows for a
description of the interactions between two smaller clusters
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• A cluster with m-points can only be included if all clusters of m-points and a smaller
diameter have already been included, this accounts for larger clusters describing weaker
electrostatic interactions

To satisfy these restrictions the algorithm employed by MAPS[35] considers the clusters of

pairs, triplets, quadruplets, etc, in increasing number of atoms and size.

Finally, as the aim of this work is generating the thermodynamic properties of a system,

it is of primary importance that the CE predicts the correct ground states. Section 2.2.2.2

describes how the code handles structure selection. However, if the selection process fails and

CE cannot correctly predict the ground states they can be given an artificial ’weight’. The

weighted CE requires the calculation of the CV to be altered. van de Walle et at. [35] have

described the weighted CV score and the process behind its implementation. They do not

recommend the use of this algorithm unless absolutely needed as it can result in widely varying

energy predictions by the CE, and so it is mentioned here only for completeness.

2.2.2.2 Structure selection

To optimize structure selection, structures with the smallest error and computation

time should be added to the fit first. However, as the CV score uses the energy of a new

structure to be added to the fit, this optimal selection method is not possible with the MAPS

framework. Instead, van de Walle proposes a method to estimate the energy of the structure

to be added to the fit.

The CE is fit with a least-squares method which consists of the bias and variance

components. To reduce the prediction error, both components should be minimized; however,

this is not possible for the bias as it requires knowledge of the candidate structure and so van

de Walle has focused on reducing the variance instead.

The covariance matrix of a least-squares estimation is

V = (XTX)−1e2 (2-26)
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Where X are the matrices ⟨
∏

j∈α σj⟩ for the structures and e2 is the mean squared error of the

fit. Using this, the predicted energy for structure i is

Êi =
∑
α

XiαJ
∗
α ≡ Xi·J

∗
· (2-27)

given that Êi is a linear function of the ECI. J∗
α is the vector of ECI multiplied by the

respective multiplicities. The variance of a linear function of a vector J∗
· with the covariance

matrix V becomes

V ar[Êi] = Xi·V X
T
i· · (2-28)

Which is the variance of the predicted energy of one structure. This is averaged over all

structures, including those not yet in the fit, to obtain the predictive power of the CE. This

is done by assuming that the correlations, Xi·, of every possible structure are distributed

isotropically in a sphere. The expected variance of a structure is randomly chosen and given by

the trace of the covariance matrix

tr[e2(XTX)−1] (2-29)

which is used to estimate the expected variance of the energies predicted by the CE.

Since the least squares fit minimizes the error of the fit (e2 → 0), the MAPS algorithm

finds new structures that maximize the difference between the trace of the existing (XTX)−1

and the trace of the new structure to be added (XTX +XT
i·Xi·)

−1. The full derivation of this

method can be found in [35].

Summarized, the algorithm scans the structures in increasing total number of atoms and

computes the variance reduction if it is added to the fit. The structure with the maximum

variance reduction will then be added to the fit. If a new ground state is predicted, the

calculation of its energy via first principles will be prioritized over finding the maximum

variance reduction to maintain the true ground state predictions.

Once an adequate CE has been fitted using these processes statistical mechanical

techniques are applied to the model to obtain thermodynamic properties. The ATAT code[37]
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includes the EMC2 tool[38] which utilizes the thermodynamic integration method to assess

finite temperature properties. A description of the methodology is included in Section 2.2.3.

2.2.3 Statistical Mechanical Techniques

The partition function of the system contains all essential information about that system,

and can be directly connected to its thermodynamic properties. Monte Carlo (MC) methods

are frequently used to calculate these properties. The course-grain partition function evaluated

by the CE can now be expressed as:

Z =
∑
σ

e−βE(σ) (2-30)

Where β = 1/(kBT ), kB is the Boltzmann constant, T is the temperature in K, and

E(σ) is the energy (per atom) of the alloy with configuration σ (Equation 2-24)[47]. The

thermodynamic quantities of free energy, internal energy and entropy are directly connected to

the partition function through the relations:

F = −kBT lnZ (2-31)

U = −T 2∂(F/T )

∂T
(2-32)

S = −

(
∂F

∂T

)
V,N

(2-33)

Where F is the Helmholtz free energy of the system, U is the internal energy and S is the

entropy. The volume, V , and number of of atoms, N, are kept fixed [48].

MC simulations are used to obtain thermodynamic information of an alloy through

sampling the semi-grand-canonical ensemble. In this ensemble the number of atoms, N,

remains fixed while the concentration is allowed to change as a chemical potential and

temperature are imposed on the system externally [38]. The Helmholtz free energy is related to

the thermodynamic potential, ϕ, by:

ϕ = F − µx (2-34)
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where, in a binary A-B alloy, x is the concentration of element A, (1 − x) is the concentration

of element B, µA is the chemical potential of A, µB the chemical potential of B, and µ is the

chemical potential difference, µA − µB.

The thermodynamic potential (per atom) for the ensemble in terms of β and µ becomes:

ϕ(β, µ) = − 1

βN
ln

(∑
i

exp(−βN(Ei − µxi))

)
(2-35)

where Ei is the internal energy (per atom) and xi is the concentration the of state of interest,

i. The potential, ϕ, expressed as a total differential is:

d(βϕ) = (E − µx)dβ−βxdµ (2-36)

Where E and x now refer to the average internal energy (per atom) and concentration of the

system.

Values for E and x can now be calculated for any β and µ through thermodynamic

integration:

β1ϕ(β1, µ1) = β0ϕ(β0, µ0) +

∫ (β1,µ1)

(β0,µ0)

(E − µx,−βx)d(β, µ) (2-37)

Where the path between (β0, µ0) and (β1, µ1) must be continuous and maintain the same

phase (no phase transition). With the EMC2 tool [38], if the user does not set an initial value

for ϕ the package calculates the low temperature expansion (LTE)[49] approximation for the

initial point, ϕ(β0, µ0), of ordered structures.

In order to automate the MC calculations, the EMC2 algorithm employs various criteria

to establish if a simulation has been successful and accurate. These include assessing when the

system has reached thermodynamic equilibrium, appropriate averaging time, detection of phase

transitions and phase boundary tracing. A full description of the algorithms can be found in

van de Walle et al. [38].

2.2.4 Phonon Contributions

Up until this point the thermodynamic properties calculated only include configurational

disorder. However, the affects of lattice vibrations must also be taken into account when
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assessing the stability of phases. The vibrational portion of the free energy can be determined

from forces calculated via the Hellmann-Feynman theorem. The first-principles finite

displacement method (FDM) [50, 51], employed by the Phonopy package [39], is used to

calculate the force constants and phonon thermal properties.

With the FMD method, an atom in a supercell, denoted as the κ-th atom in the l-th

unit cell, is displaced a small distance, u(lκ), from its equilibrium lattice position, r(lκ), which

induces forces acting on all other atoms in the system. The potential energy of the crystal, Φ,

can be assumed to be an analytic function of u(lκ) and when expanded has the form:

Φ = Φ0 +
∑
lκ

∑
α

Φαuα +
1

2

∑
ll′κκ′

∑
αβ

Φαβuαuβ +
1

3!

∑
ll′l′′κκ′κ′′

∑
αβγ

Φαβγuαuβuγ + . . . (2-38)

where α, β and γ are the Cartesian indices, and Φ0, Φα, Φαβ and Φαβγ are the zeroth, first,

second and third order force constants, respectively. The second-order force constants are

solved with harmonic approximation, with the force, Fα, given by:

Fα(lκ) = − ∂Φ

∂uα(lκ)
(2-39)

and the second-order force constant, Φαβ(lκ, l
′κ′), by:

Φαβ(lκ, l
′κ′) =

∂2Φ

∂uα(lκ)∂uβ(l′κ′)
= −∂Fβ(l

′κ′)

∂uα(lκ)
(2-40)

Third-order and higher terms are determined with perturbation theory.

A force vector, F, cumulative force constant matrix, P, and displacement vector, U, are

populated by Phonopy, which automatically generates a number of structures with different

atomic displacements, according to user specified inputs, and then calculates the forces

with the user’s choice of first-principles code at a constant volume. Additionally, symmetry

operations of the crystal’s spacegroup are applied to further improve the accuracy of the force

calculations, which is outlined in more detail in References [50, 52].

41



A dynamical matrix, D(q), describing the properties of atoms in harmonic approximation

in the crystal can now be given by:

Dαβ
κκ′(q) =

1
√
mκmκ′

∑
l′

Φαβ(lκ, l
′κ′)e(iq·[r(l

′κ′)−r(lκ)]) (2-41)

where m is the atomic mass of atom κ, and q is the wave vector. Phonon eigenfrequencies are

determined by solving the eigenvalue problem:

D(q)eqj = ω2
qjeqj (2-42)

where ω2
qj gives the phonon frequencies, eqj the polarization vector of the phonon mode, and

with {qj} labeling the set. From the phonon frequencies, the harmonic energies of the phonon

system are calculated using Bose-Einstein statistics and including the zero-point energy as:

Evib =
∑
qj

ℏωqj

[
1

2
+

1

eℏωqj/kBT − 1

]
(2-43)

where ℏ is the reduced Planck constant. The vibrational contributions to the Helmholtz free

energy, Fvib, constant volume heat capacity, CV , and entropy, Svib, can be calculated as

functions of temperature using the thermodynamic relations in Equations 2-31, 2-32 and 2-33

[53]:

Fvib =
1

2

∑
qj

ℏωqj + kBT
∑
qj

ln
[
1− e(−ℏωqj/kBT )

]
(2-44)

CV =
∑
qj

Cqj =
∑
qj

kB

(
ℏωqj

kBT

)2
e(ℏωqj/kBT )[

e(ℏωqj/kBT ) − 1
]2 (2-45)

Svib =
1

2T

∑
qj

ℏωqjcoth
[
ℏωqj/kBT

]
− kB

∑
qj

ln
[
2sinh(ℏωqj/kBT )

]
(2-46)

Harmonic approximation does not accurately describe volume dependant effects, such

as thermal expansion and heat capacity, or anharmonic effects. The description of volume

dependant effects can be improved by quasi-harmonic approximation, which is beyond the

scope of this work. Hydrogen vibrations can be very anharmonic and isotropic [54] and may

effect the ground state properties in a hydride system. Studies comparing anharmonic, or
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relativistic, simulations with non-relativistic simulations found that in cubic 4d transition metal

dihydrides the addition of the quantum effects did not lead to any improvement in the bulk

modulus or cohesive energy [54]. Although the Zirconium-Hydrogen system does include a

cubic ground state, it also has a hexagonal and two tetragonal ground states. As the above

equations are calculated with Bose-Einstein statistics, quantum effects have been accounted for

in this work.
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CHAPTER 3
TELLURIUM DOPED GALLIUM ARSENIDE

In semiconductors, doping is the addition of impurities which allows electrical properties

to be controlled. The addition of a group VI element to a III-V compound creates an n-type

semiconductor, which is a semiconductor with an excess of electrons. The process of doping

semiconductors creates damage in its atomic lattice, which is repaired by heat treatment. Heat

treatment also, generally, electrically activates the dopants, making the excess or dearth of

electrons available for conduction. However, work by Kennon et al. [55] on supersaturated

Tellurium (Te) -doped Indium Gallium Arsenide (InGaAs) found electrical activation decreased

after annealing. Kennon et al. proposed that this deactivation was caused by either Te-Te

clustering or Te- point defect reactions.

Although only focusing on Te doped GaAs, the work in this chapter is intended as a

prelude to a study of defect energetics in InGaAs to increase understanding of the mechanisms

behind the observed electrical deactivation. The structure of GaAs is the same as InGaAs;

InGaAs is a ternary alloy of InAs and GaAs. Previously, experimental work by Gebauer et al.

[12] found three types of defects contribute to charge carrier compensation in Te doped GaAs;

Ga vacancies (VGa), Te substitution on As sites (Te donors, TeAs) and Ga vacancy-donor

complexes (VGa-TeAs).

In addition to quantifying the defect energetics of the system, this work will explore

the correction term for defect formation energy calculations computed via the Freysoldt,

Neugebauer and Van de Walle (FNV) method [5]. As the FNV method was developed for point

defects, the suitability of the method when applied to defect complexes will be assessed in

comparison to infinitely spaced defects and trends are identified.

3.1 Configuration of Structures

GaAs is a compound semiconductor with a zinc-blende structure [10], see Figure 3-1A,

space group F 4̄3m. Gallium (Ga) has an orthorhombic structure with the space group

Cmce, Figure 3-1B. The most common Arsenic (As) allotrope is α-As, with a double layered
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Figure 3-1. Atomic structures of GaAs, Ga, As and Te. A) GaAs (zinc-blende F 4̄3m), B) Ga
(orthorhombic Cmce), C) As (rhombohedral R3̄m) and D) Te (trigonal P3121).
Ga atoms represented by green spheres, As atoms by dark purple and Te atoms by
light purple.

rhombohedral structure, spacegroup R3̄m, Figure 3-1C. The Te crystal structure is trigonal,

spacegroup P3121, Figure 3-1D.

Malouin et al. [56] suggested the GaAs structure has nine possible interstitial sites, two

tetrahedral sites (Tetra[Int−As] and Tetra[Int−Ga]), one hexagonal, a site on a bond center,

two split interstitial dumbbells in the <110> direction (110-split[Int−As] and 110-split[Int−Ga]),

two split interstitial dumbbells in the <100> direction (100-split[Int−As] and 100-split[Int−Ga])

and a split interstitial dumbbell in the <111> direction (111-split[Int−As]). Malouin et al.

simulated the insertion of Ga self interstitials in these configurations and found Tetra[Ga−Ga] to

the be most stable configuration, followed by Tetra[Ga−As]. 110-split[Ga−As] was the next most

favorable in a negative or charge neutral system but relaxed to 111-split[Ga−As] in a charge

positive system. Malouin et al. reported that these defect structures and the 100-split[Ga−Ga],

the least favorable interstitial position, are metastable states. Additionally, they found that the

hexagonal, bond center and 110-split[Ga−Ga] relaxed into Tetra[Ga−Ga]. Finally, 100-split[Ga−As]

was found to be highly unstable. All configurations except the hexagonal, bond center and

111-split are shown in Figure 3-2.

3.2 Simulation Parameters

Total energies of the GaAs, Ga, As and Te structures were calculated by density functional

theory (DFT) using the Vienna Ab initio Simulation Package (VASP) [19, 20, 57, 58].
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Figure 3-2. Interstitial positions in the GaAs structure. Ga atoms represented by green spheres,
As atoms by dark purple and interstitial sites by orange.

Geometries of the conventional unit cells, Figure 3.1, were relaxed at a constant pressure

P = 0 Pa, and temperature T = 0 K, with no symmetry constraints using projector augmented

wave (PAW) pseudopotentials [21, 59] and the Local Density Approximation (LDA) [60]

exchange correlation. The pseudopotentials treated As 4s2p3, Ga 4s2p1 and Te 5s2p4 electrons

as valence. Pseudopotentials which treat the d-electrons as valence are also available; however,

the d states are calculated too high (particularly for Ga), placing them closer to the valence

band maximum (VBM), which, in turn, repels the p states higher [61]. This pushes the VBM

higher and decreases the band gap, as can be seen in the work by Schultz et al. [30] comparing

pseudopotentials with and without d-electrons, Table 3-1. In addition to decreasing the band

gap, including the d-shell electrons increases the computational expense of simulations. For

these reasons, in this work d-electrons have been treated as core electrons.

LDA is commonly used in first-principles calculations of zinc-blende semiconductors [67]

as it is able to calculate bulk properties, charge densities and formation energies with a high
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Table 3-1. Calculated lattice parameter, a (Å), heat of formation, ∆H (eV), and band gap
energy, Eg (eV), for zinc-blende GaAs. Exchange correlation specifies if the 3d
electrons are treated as core electrons (Core), valence (Val) or is not listed in
reference (NL).

Reference Year Exchange
correlation

Basis set a (Å) ∆H (eV) Eg (eV)

Experimental 1982/2020 - - 5.6533
[10]

0.74 [9] 1.52 [62]

This work 2020 LDA-Core PW* 5.610 0.645 0.95
Jana [63] 2018 LDA-NL PW 5.627 - 0.50

GGA-NL PW 5.763 - 0.15
SCAN-NL PW 5.664 - 0.80

Mejia-Rodriguez
[64]

2018 SCAN-Val PW 5.659 - 0.77

Yang [65] 2016 LDA-NL PW - - 0.30
GGA-NL PW - - 0.53
SCAN-NL PW - - 0.45
HSE-NL PW - - 1.41

Komsa [66] 2009 LDA-Val PW 5.605 - 0.53
Schick [28] 2002 LDA-Val PW - - 0.80
Schultz [30] 2009 LDA-Core DZP** 5.628 0.636 0.47

LDA-Val DZP 5.599 0.740 0.83
GGA-Core DZP 5.767 0.694 0.13
GGA-Val DZP 5.739 0.787 0.45

Malouin [56] 2007 LDA-Val DZP 5.60 0.737 0.82
* PW: Plane wave.
** DZP: Double-ζ polarized.

degree of accuracy [61]. The generalized gradient approximation (GGA) does not have any

advantages or improvements over LDA in calculations of bulk properties and formation energies

[68, 69]. Work by Jana et al. [63] and Schultz et al. [30] shows this is true for the GaAs

compound, as the lattice parameter (a) and heat of formation (∆H) calculated by LDA is

a better match to the experimental results than GGA, Table 3-1. However, it is well known

that both the LDA and GGA exchange correlation underestimate the band gap. This is seen

in all computational examples in Table 3-1. In the case of LDA, generally the calculated upper

valence bands agree well with experimental work and the conduction bands are underestimated

[67]. This underestimation leads to smaller band gaps than experimental values. Attempts to

overcome this include methods such as the use of meta-GGA functionals, such as the Strongly
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constrained and appropriately normed semi-local density functional (SCAN) [70], and hybrid

functionals, such as the Heyd–Scuseria–Ernzerhof (HSE) functional [71]. The SCAN functional

is reported by Jana et al. [63], Meijia-Rodriguez et al. [64] and Yang et al. [65] to also

underestimate the band gap. The HSE functional calculated a band gap similar to experimental

values; however it was deemed to be prohibitively expensive for this work. As the focus of this

work is on defect energetics LDA is considered to be an appropriate exchange correlation, as

also used in previous literature focused on charged defect formation in GaAs [5, 28, 56, 66].

Convergence tests for ENCUT, KPOINT and cell size for the neutral GaAs structure were

preformed. In Figures 3-3 A. and B. a single conventional unit cell with 8 atoms, 4 Ga and

4 As, was used to establish that an energy cut off of 500 eV and 8 × 8 × 8 Monkhorst-Pack

k-point grid gives a precision better than 1 meV per atom. 500 eV is a conservative choice

for the energy cutoff, but was chosen to maintain the precision as the difference between 400

eV and 450 eV was greater than 1 meV. Figure 3-3C. compares the simulation of the 8 atom

conventional unit cell to a 64 atom supercell with a k-point grid of 4 × 4 × 4 and a 216 atom

supercell with a k-point grid of 2 × 2 × 2. Note, in C. the scale is significantly decreased in

comparison to A. and B. The k-point density was decreased with the increase in cell size in an

effort to maintain a similar k-point density across the simulations.

The energy difference between the 64 atom and 216 atom supercell was less than 1 meV.

A further test to assess the time and memory required for each supercell was conducted, see

Figure 1-3. The 216 atom supercell simulation took approximately 1.7 times longer than the

64 atom supercell and the memory required was more than double. Given these calculations are

for the perfect bulk structure and cost is expected to increase with defect structures, the small

amount of additional precision gained with the 3 × 3 × 3 supercell was not deemed worth the

computational cost and the 2 × 2 × 2 supercell with a 4 × 4 × 4 k-point grid was used going

forward in this work.
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Figure 3-3. Convergence tests for GaAs structure. A) ENCUT convergence for a 1× 1× 1 cell:
Red line indicates at 500 eV precision became better than 1 meV per atom. B)
KPOINT convergence for a 1× 1× 1 cell: Red line indicates number of k-points at
which precision became better than 1 meV per atom. This resulted in a k-point
grid of 8× 8× 8. C) Cell size convergence: Shows the energy difference between a
2× 2× 2 and 3× 3× 3 cell to be smaller than 0.01 meV per atom.

Figure 3-4. Comparison of time and memory cost for 1× 1× 1, 2× 2× 2 and 3× 3× 3 sized
GaAs simulation cells with similar k-point densities. Time (min.) is indicated by
the blue line and memory (MB) by the orange.

3.3 Chemical Potentials and Bulk Properties

Chemical potentials and energies of the bulk materials were calculated as VASPs’

outputted total energy per formula unit for the atomic species or compound. The midpoint

value between the maximum and minimum chemical potentials for Ga and As were chosen

as the values for (µi) as GaAs can be grown in either Ga-rich or As-rich environments, see
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Table 3-2. Calculated chemical potentials and internal energies of bulk Ga, As, Te and GaAs.
Chemical potentials in the bulk, µ(bulk), for Ga, As and Te are in eV per atom and
energy per pair of bulk GaAs, EGaAs(bulk) is in eV per formula unit.

System Energy (eV per atom or formula unit)
µGa -3.93
µAs -5.71
µTe(bulk) -3.80
EGaAs(bulk) -9.64

Table 3-2. By choosing the midpoint, the calculations are for stoichiometric conditions in the

case of GaAs. If the growth conditions are known µi can be easily calculated as outlined in

Section 2.1.2. The heat of formation, ∆H, was calculated as 0.645 eV using Equation 2-8

(∆H = −EGaAs(bulk) + µGa(bulk) + µAs(bulk)).

Table 3-1 compares the calculated lattice parameter, a, and ∆H to experimental and

DFT values. This work uses the plane wave-LDA exchange correlation with d-electrons as

core electrons to ensure the widest possible band gap and similar values to experiment for the

lattice parameter and heat of formation with minimal computational expense. Despite this,

the calculated band gap is 0.953 eV, approximately 0.6 eV smaller than the experimental band

gap. The wider band gap in this work in comparison to the other DFT values in Table 3-1

stems from the different basis sets used and the treatment of the d-electrons as either core or

valence, as discussed in Section 3.2.

3.4 Workflow for Simulations

In this work, defect formation energies are calculated with Equation 2-1, also shown

below. Each structure is simulated with charges (q) ranging from -3 to +3. Chemical

potentials (µi) are listed in Table 3-2. The Fermi energy (EF ) is set as the VBM (EV BM)

relative to the vacuum of the perfect GaAs structure, calculated as 3.99 eV, plus the Fermi

level with respect to the EV BM , EF = EV BM + µe. µe is bound by the energy of the band

gap (0 ≤ µe ≤ Eg); as a result, each charge state has a range of calculated defect formation

energies, similar to Figure 3-3. As discussed in Section 3.2, LDA calculations underestimate the

band gap energy, and so the experimental band gap is used as a guide for the value of Eg. The
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experimental band gap energy is 1.52 eV at 0 K and 1.43 eV at 300 K [62], thus in this work

Eg is set at 1.5 eV in an effort to show defect behaviors over the full band gap.

Eform[X
q] = Etot[X

q]− Etot[bulk
0]−

∑
i

niµi + qEF + Ecorr (2-1)

Calculations for this work were carried out in a systematic approach. Initially, intrinsic

point defects in GaAs were simulated to compare to the literature. The results for the Ga

vacancy, As vacancy, Ga interstitial and As interstitial are in Section 3.5. Extrinsic point

defects, two Te interstitials and Te substituted on As or Ga sites, are investigated in Section

3.6. Double defect complexes comprising of mixed intrinsic and extrinsic defects and double

extrinsic defects were considered next. From the four intrinsic and four extrinsic point defects

there is a total of 32 different combinations possible (2 × 42), not including double intrinsic

defects. In addition, each structure is simulated 7 times for differing charge states, leading

to 224 simulations to be carried out if all combinations were to be explored. The most

energetically favorable defects were combined to create double defects and a sample of less

favorable defects combined with the most favorable defects is also investigated to generally

characterize the behaviour for the 32 combinations. These results are reported in Section

3.7.1. Once double defect complexes were studied, complexes with negative formation energies

and one positive formation energy complex had an additional defect added to understand the

system with triple defect complexes, Section 3.7.2.

This approach is illustrated in Figure 3-5, with intrinsic and extrinsic point defects colored

according to their defect formation energy: negative (green), low but positive (orange), or high

and positive (red). Double defects are colored light blue and triple defects are colored dark

blue. Lines from one defect to another show which defects combine to create a complex, e.g.,

the green line from the VGa box to the TeAs and TeInt[Te−X] boxes then continue on to create

the VGa-TeAs, VGa-TeInt[Te−Ga] and VGa-TeInt[Te−As] double defect complexes.
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Figure 3-5. Workflow for Te-doped GaAs simulations. Intrinsic and extrinsic defects are listed
in the left two columns with colors indicating if they are favorable (green),
potentially favorable (orange) or unfavorable (red). Double defects are indicated by
light blue boxes and triple by dark blue. Colored lines between boxes show which
defects combine to create double or triple defect complexes.

3.5 Charged Intrinsic Point Defects in GaAs

The values reported in all tables henceforth are the defect formation energies for µe = 0.

The lowest defect formation energies as a function of Fermi level, µe, are shown in figures

accompanying tables and span a range from 0 ≤ µe ≤ 1.5, where 1.5 eV is the experimental

band gap energy in eV.
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The sxdefectalign code, created by Freysoldt et al. [5, 32] and outlined in Section 2.1.3,

is used to calculate the energy corrections (Ecorr) and is discussed in Section 3.9. Freysoldt et

al. provides practical examples of the code including its application to the Ga vacancy in GaAs

with a charge state of q = −3 (V−3
Ga) which is used here as a benchmark. The following steps

were taken in simulating the benchmark:

1. A static self-consistent (SC) calculation is performed on a perfect 3 × 3 × 3 GaAs
supercell, generating a file with the local potential.

2. A Ga atom is removed from the supercell, three electrons are added, creating a charge
of q = −3, and a static SC calculation is performed, generating a file with the local
potential.

3. sxdefectalign uses the local potential files to calculate the the short-range, V sr, and
long-range potentials, V lr (initial potentials in Figure 3-6).

4. Alignment constant C is set to the V sr plateau height and sxdefectalign is used to
calculate the aligned V sr, V lr (aligned potentials in Figure 3-6), and the energy
correction term (Ecorr).

The potentials in Figure 3-6 are averaged over the xy plane as a function of z, and include the

V sr, V lr and defect induced potential (from DFT). The defect induced potential should show a

parabolic shape similar to V lr between the defect and its periodic image, in this case between

at z = 0 and z = 31.21 bohr (1 bohr = 0.53 Å). The V sr must show a plateau between

the defects to indicate the short-range and long-range effects have been separated in order to

use the sxdefectalign code. The alignment constant (C) is indicated on the plot of the initial

potentials. The potentials have been correctly aligned when the V sr plateau is at 0 eV and the

DFT potential overlaps V lr, as shown.

Figure 3-6 shows that the criteria of a plateau in the V sr existing, upon alignment being

at V = 0 eV, and the defect induced potential overlapping the V lr was met. This work has

resulted in a similar potential shape as published by Freysoldt et al., Figure 3-7, for the same

system. There is a some slight difference in the figures stemming from small differences in the

GaAs lattice parameter; however the same shapes and trends are observed. Larger differences

such as the defect induced potential and V sr having lower potential values at z = 0 and
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Figure 3-6. Initial and aligned potentials averaged on the xy plane for a V−3
Ga defect in a

3× 3× 3 GaAs supercell calculated by sxdefectalign. The defect is located at
z = 0 bohr, and a periodic image at z = 31.21 bohr. Alignment constant C is
indicated on the initial potentials.

the periodic image are most likely due to Freysoldt et al. using a different code for DFT

calculations, the SPHInX code [72], and slight differences in simulation parameters. Freysoldt

et al. calculated the defect formation energy for V−3
Ga with the Fermi energy at the VBM to

be 5.8 eV, with an Ecorr of 1 eV [5]. This work found the Ecorr to be 1.01 eV, resulting in a

formation energy of 5.65 eV, 0.15 eV smaller than Freysoldt’s calculations.

To assess the precision of the FNV method on removing effects of defects interacting

with their periodic images, the same steps outlined above were preformed on V−3
Ga defects in

supercell of sizes ranging from 2×2×2 to 4×4×4. From Figure 3-8, the formation energy

ranges from 3.69 eV to 4.74 eV for the uncorrected calculation, and from 5.25 eV to 5.65

eV for the corrected calculation. The spread for the uncorrected energies is 1.05 eV and 0.4

eV for the corrected energies. This result is similar to results from Freysoldt et al. [5], who

found a spread of 0.8 eV for uncorrected formation energies and 0.2 eV for corrected energies.
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Figure 3-7. Potentials for a V−3
Ga defect in a 3× 3× 3 GaAs supercell calculated by Freysoldt

et al. [5]. The defect is located at z = 0 bohr, and a periodic image at z = 31.21
bohr. [Used with permission from Freysoldt et al.[5]]

Since the results of Freysoldt et al. were reasonably well reproduced in this work, Ecorr will

be calculated with sxdefectalign in the remainder of this work. Additionally, as the range of

values for the corrected energies varied by 0.4 eV, it is assumed that the accuracy of formation

energies calculated with the FNV method is approximately the same. Combined with the

maximum thermal energy that can be applied to the system before melting at approximately

1500 K, approximately 0.13 eV, any formation energy of 0.6 eV or lower will be considered as

reasonably low and potentially become favorable when heat is applied to the system.

3.5.1 Vacancies

The formation energies and calculated correction energies for Ga and As vacancies (VGa

and VAs) are reported in Tables 3-3 and A-2. By rearranging Equation 2-1 it is possible to

create plots of the formation energy (Eform) as a function of the Fermi level (µe). For each

charge state a linear formation energy function exists with the Eform from Table 3-3 as the

intercept of the horizontal axis and the gradient equal to the charge, q. The lowest energy

line at any µe is the most favorable charge state for that µe. Examples showing the formation

energy functions for each charge state for the intrinsic vacancies are in Figure 3-9.

At µe = 0 (Table 3-3), VGa has lower defect formation energies in the neutral and

negative charge states, while VAs has lower formation energies in positive charge states.
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Figure 3-8. Effect of supercell size on formation energy of unrelaxed V−3
Ga with and without

correction term. Blue indicates the formation energy with the correction term
applied and orange without. Dashed lines indicate linear polynominal fit to each
data set.

However, overall VGa has lower formation energies than VAs, as illustrated in Figure 3-10

center, with the two plots in Figure 3-9 superimposed for stoichiometric conditions. The image

to the left shows how adjusting the chemical potentials for a Ga-rich environment shifts the

VGa formation energies up, in blue, and the VAs formation energies down, in orange. The

image to the right shows the As-rich environment, with VGa shifting down and VAs shifting

up. In the stoichiometric case, the VGa line is lower than the VAs line, except for µe < 0.025.

Table 3-3. Intrinsic vacancy formation energies (Eform) in eV for GaAs. Charges (q) range
from -3 to +3. Lowest formation energy for each defect indicated in bold print.

Defect Charge (q)
-3 -2 -1 0 +1 +2 +3

VGa 3.842 3.175 2.856 2.884 3.244 3.949 5.002
VAs 5.275 4.237 3.526 3.070 2.810 3.214 3.451
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Figure 3-9. Calculated formation energies (Eform), as a function of the Fermi level (µe) for
VGa and VAs. Black lines indicate the most favorable charge states for given µe.

Figure 3-10. Calculated formation energies (Eform), as a function of the Fermi level (µe), for
intrinsic vacancies under Ga-rich, stoichiometric and As-rich growth conditions.
VGa is in blue and VAs in orange. Ga-rich growth conditions are on the left,
stoichiometric in the middle and As-rich on the right.

Approaching µe = 1.5, the VGa formation energy becomes negative, indicating that as the

Fermi level approaches the conduction band minimum (CBM) these vacancies will form with a

charge q = −3. This is in agreement with Gebauer et al. [73] who found that formation of V−3
Ga

is favorable.

Figure 3-11 is an example of the potentials calculated for V−3
Ga. This differs from

Figures 3-6 and 3-7, with more oscillations in the defect induced potential (from DFT)

and the V sr due to the ion positions having been relaxed. However, there is a clearly defined
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Figure 3-11. Calculated potentials averaged on the xy plane for the V−3
Ga defect in a 2× 2× 2

GaAs supercell with relaxed ions. The defect is located at z = 15.9 bohr.

plateau which, when aligned, results in the induced potential following the trend of V lr, thus

meeting the criteria outlined in Section 3.5.

3.5.2 Interstitials

Ga interstitials (GaI) on the sites listed in Section 3.1 were simulated with a neutral

charge to compare to the results from Malouin et al. [56], see Table 3-4. The 111-split[Ga−Ga]

interstitial was not simulated as Malouin only found this structure upon relaxation of the

110-split[Ga−As] interstitial with a positive charge. Additionally, the hexagonal and bond

center interstitials were not simulated as Malouin found they relaxed to the Tetra[Ga−Ga]

structure. As the values reported by Malouin are generally larger than the results of this work

due to their use of a double-ζ polarized basis set (DZP) and a different energy correction

scheme, they are not directly comparable. However the same trend in stability was observed

with the Tetra[Ga−Ga] interstitial defect having the lowest formation energy. In this work the

110-split[Ga−Ga] relaxed into a Tetra[Ga−As] interstitial.

Similarly, the formation energies for the As interstitial (AsI) in the same defect sites were

calculated to find the configuration with the lowest formation energy, see Table 3-5. It was
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Table 3-4. Ga Interstitial formation energies (Eform) in eV for a charge neutral system. Lowest
formation energy for each defect indicated in bold print.

Interstitial defect This work Malouin et al. [56]
Tetra[Ga−As] 3.448 3.73
Tetra[Ga−Ga] 3.124 3.42
110-split[Ga−As] 4.641 4.24
110-split[Ga−Ga] relaxed to Tetra[Ga−As] relaxed to Tetra[Ga−Ga]

100-split[Ga−As] not simulated does not converge
100-split[Ga−Ga] 4.902 4.92

Table 3-5. As Interstitial formation energies (Eform) in eV for a charge neutral system. Lowest
formation energy for each defect indicated in bold print.

Interstitial defect This work
Tetra[As−As] 5.307
Tetra[As−Ga] 5.040
110-split[As−As] 4.239
110-split[As−Ga] 4.690
100-split[As−As] 4.684
100-split[As−Ga] not simulated

found that an As interstitial in a split-dumbbell in the <110> direction is the most favorable

position; however the Ga Tetra[Ga−Ga] interstitial formation energy is overall lower.

The formation energies for the GaTetra[Ga−Ga] and As110−split[As−As] interstitial sites

as a function of charge are reported in Table 3-6. GaTetra[Ga−Ga], is more favorable than

As110−split[As−As] over all charge states with lower formation energies (blue line), see Figure

3-12. GaTetra[Ga−Ga] has the lowest formation energy at µe = 0 with the charge q = +1. The

most favorable As110−split[As−As] also has its lowest formation energy for q = +1.

Overall, for intrinsic point defects in GaAs, this work found the V−3
Ga defect has the

lowest defect formation energy and will form as the Fermi level approaches the CBM. This

is in agreement with experimental work by Gebauer et al.[12]. This work was also able to

largely replicate the work of Freysoldt et al.[5] and employ the FNV method to calculate the

correction term to remove electrostatic interactions between periodic images.

3.6 Charged Extrinsic Point Defects in Te Doped GaAs

Extrinsic Te point defects in GaAs were also simulated with charges ranging from -3 to

+3. Te interstitials bonded to Ga and As (TeInt[Te−Ga] and TeInt[Te−As]) were simulated along
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Figure 3-12. Calculated formation energies (Eform), as a function of the Fermi level (µe), for
intrinsic interstitials and their initial and relaxed structures. GaTetra[Ga−Ga] is in
blue and As110−split[As−As] in orange.

Table 3-6. Intrinsic interstitial formation energies (Eform) in eV for GaAs with charges (q)
ranging from -3 to +3. Lowest formation energy for each defect indicated in bold
print.

Defect Charge (q)
-3 -2 -1 0 +1 +2 +3

GaTetra[Ga−Ga] 8.426 6.364 4.583 3.124 2.104 2.497 3.218
As110−split[As−As] 8.765 6.821 5.250 4.239 3.382 3.854 3.998

with Te atoms substituted on Ga and As sites (TeGa and TeAs). Table 3-7 shows the results of

these calculations. The lowest neutral defect formation energy at µe = 0 is for TeAs, followed

by TeGa, TeInt[Te−As] and the highest formation energy is TeInt[Te−Ga]. In Figure 3-13, TeAs

has negative formation energies for µe < 0.3, showing charge state q = +1 as very favorable.

Figure 3-14 shows that TeInt[Te−Ga] has a lower formation energy than TeInt[Te−As] for all

values of µe, but does not approach favorable negative formation energies. The structures

show TeInt[Te−Ga] remains in its initial position; however, upon relaxation the TeInt[Te−As]
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interstitial leaves the tetrahedral position and bonds with a neighboring Ga atom in a dumbbell

configuration.

This work has also shown agreement with Gebauer et al. [12] in that the Te+1
As has

negative formation energies, indicating its formation is favorable. The final type of defect

found by Gebauer et al. is Ga vacancy-donor complex, VGa-TeAs, which is explored in Section

3.7.1.

3.7 Charged Defect Complexes in Te Doped GaAs

Freysoldt et al.’s sxdefectalign code [5, 32] was created to systematically calculate the

energy corrections needed to compensate for interactions between periodic images of a charged

point defects. In the case of defect complexes, if the anisotropy in the charge distribution

isn’t large it should be possible to use its average in the direction of the defect’s alignment to

calculate the correction energy. This will be further studied in this section by calculating the

corrections for a series of double and triple defects in Te doped GaAs with charges ranging

from -3 to +3, and for a few select complexes varying the distance between the defects. The

formation energies of the double and triple defects are compared to the formation energies of

the point defects that combine to create the complex as if they were infinitely spaced. Referred

to in this work as ’infinite’ distance defects, these formation energies are calculated by adding

the minimum formation energies of each point defect in the complex at the specified µe.

3.7.1 Double Defect Complexes

Defect complexes are studied in this section starting with double defect complexes

containing at least one of the point defects predicted to form, VGa or TeAs. The formation

Table 3-7. Extrinsic point defect formation (Eform), in eV, for Te doped GaAs with charges (q)
ranging from -3 to +3. Lowest formation energy for each defect indicated in bold
print.

Defect Charge (q)
-3 -2 -1 0 +1 +2 +3

TeGa 7.278 5.294 4.552 3.232 2.318 2.419 3.033
TeAs 6.039 4.008 2.246 0.789 -0.265 0.165 0.957
TeInt[Te−Ga]10.799 8.873 7.434 6.360 5.621 5.242 5.242
TeInt[Te−As] 9.253 7.271 5.576 4.255 3.960 4.246 4.915
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Figure 3-13. Calculated formation energies (Eform), as a function of the Fermi level (µe), for
extrinsic Te substitutions. TeAs energies are blue and TeGa are orange.

Figure 3-14. Calculated formation energies (Eform), as a function of the Fermi level (µe), for
extrinsic Te interstitials and their initial and relaxed structures. TeInt[Te−Ga] is in
blue and TeInt[Te−As] in orange.

energy of V−3
As is reasonably low, 0.75 eV (Figure 3-10 center), that the defect may form under
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Table 3-8. VGa+TeAs formation energies (Eform) in eV for Te doped GaAs with charges (q)
ranging from -3 to +3. Lowest formation energy for each defect indicated in bold
print.

Distance Charge (q)
-3 -2 -1 0 +1 +2 +3

2.5 Å 4.113 2.348 1.879 1.768 1.992 2.597 3.534
4.7 Å 4.700 2.929 2.422 2.283 2.475 3.023 3.914
6.1 Å 4.839 3.049 2.537 2.371 2.543 3.074 3.960
7.3 Å 4.796 3.044 2.584 2.454 2.621 3.228 4.181

Figure 3-15. Calculated formation energies (Eform), as a function of the Fermi level (µe), for
VGa+TeAs and the initial and relaxed structure of the closest cluster
configuration. Blue is for the defect complex with a distance of 2.5 Å between
sites, 4.7 Å is orange, 6.1 Å is yellow, 7.3 Å is purple and green is at an infinite
distance.

dopant implantation or post-heat treatment. Thus, VAs is simulated with a less favorable

defect, TeGa, to characterize the behaviour of a defect which is expected to be unlikely to

form. Finally the double-TeAs complex is simulated.

A Ga vacancy and a Te substituted with an As atom (VGa+TeAs) is simulated with the

defects in first to forth nearest neighbor positions. Table 3-8 shows that when the defects

are closer their formation is more favorable, with the first nearest neighbor position (2.5 Å,

blue) having the lowest formation energies, most likely due to the opposite charges on the
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Table 3-9. VGa+TeInt[Te−X] formation energies (Eform) in eV for Te doped GaAs with charges
(q) ranging from -3 to +3. Te interstitial is in the tetrahedral position bonded to
either As (Te-As) or Ga (Te-Ga) atoms. Lowest formation energy for each defect
indicated in bold print.

Bond Distance Charge (q)
-3 -2 -1 0 +1 +2 +3

Te-Ga 2.5 Å 7.244 5.289 3.726 2.882 2.611 2.443 3.058
Te-As 2.8 Å 6.736 5.358 4.123 3.166 2.318 2.417 3.028
Te-Ga 4.7 Å 7.037 5.109 4.207 2.844 1.850 1.927 2.465
Te-As 4.9 Å 7.137 6.462 6.461 6.348 6.590 7.141 7.824
Te-Ga 6.1 Å 7.923 6.740 5.750 5.571 5.753 6.235 4.062
Te-As 6.3 Å 7.535 6.865 6.104 5.945 6.144 6.666 7.505

constituent defects attracting each other. The 2.5 Å structure is shown in Figure 3-15 and the

plot shows that the formation energy of this structure becomes negative as µe approaches the

CBM, indicating that it’s likely to form with a charge q = −2. As the distance between the

defects increases, their formation energies increase, approaching the infinite distance complex

(green).

The Ga vacancy and Te interstitial (VGa+TeInt[Te−X]) defect complex is simulated with

the Te interstitial in the tetrahedral position bonded to either Ga or As atoms, and with the

vacancy and interstitial in first to eighth nearest neighbor positions. Table 3-9 shows that

when the defects are closer they have lower formation energies, with the third nearest neighbor

position (4.7 Å) having the lowest at q = +2. However, there is significant relaxation of the

structures from their initial configurations in almost all cases.

The initial and final structures for each distance are shown in Figures 3-16 and 3-17. The

2.5 Å, 4.7 Å and 6.1 Å structures initially have the interstitial Te bonded with Ga atoms, while

the 2.8 Å, 4.9 Å and 6.3 Å structures are initially bonded to As atoms. In most cases, the Te

atom moves to a final position closer to the Ga vacancy; however for the 4.7 Å structure (the

third nearest neighbor) the Te substitutes onto an As site and pushes the As atom into the Ga

vacancy site forming the TeAs+AsGa defect complex. Because of these relaxations, this defect

complex cannot be used to observe any trends in formation energies in relation to the distance

between the defects.
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Figure 3-16. Initial and final structures of VGa+TeInt[Te−X] with distances between the defects
of 2.5 Å 2.8 Å and 4.7 Å. In the 2.5 Å complex the Te interstitial is initially
bonded to Ga atoms, in the 2.8 Å to As atoms and in 4.7 Å to Ga atoms.

Figure 3-17. Initial and final structures of VGa+TeInt[Te−X] with distances between the defects
of 4.9 Å 6.1 Å and 6.3 Å. In the 4.9 Å complex the Te interstitial is initially
bonded to As atoms, in the 6.1 Å to Ga atoms and in 6.3 Å to As atoms.
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Figure 3-18. Calculated formation energies (Eform), as a function of the Fermi level (µe), for
VGa+TeInt[Te−X]. Blue is for the defect complex with a distance of 2.5 Å between
the atoms, 2.8 Å is orange, 4.7 Å is yellow, 4.9 Å is purple, 6.1 Å is green, 6.3 Å
is sky blue and at an infinite distance is magenta. Bonding environment for the
Te interstitial is noted.

In Figure 3-18 the 4.7 Å structure has the lowest formation energy of all structures at

µe = 0 and a charge q = +1. There is no discernible difference between interstitials bonded

to Ga or As atoms; however, the first three nearest neighbor complexes and last three are

separated. This is due to the final structures of the three nearest neighbors relaxing to either

fill the vacancy or having the Te atom move to a position less than 1 Å from the vacancy site.

All formation energies are positive and larger than 1.9 eV or larger, suggesting these complexes

are unlikely to form.

A Te substituted on an As site and a Ga interstitial bonded to As atoms

(TeAs+GaTetra[Ga−As]) is simulated in first to fourth nearest neighbor positions. Table 3-10

and Figure 3-19 show that the defect formation energies have similar trends and are generally

high, indicating the defect complex is unlikely to form. It can also be seen that as the distance

between the defects increases the formation energy converges on the infinite distance complex.

For all distances the structure didn’t differ from the initial structure upon relaxation.
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Table 3-10. TeAs+GaTetra[Ga−As] formation energies (Eform) in eV for Te doped GaAs with
charges (q) ranging from -3 to +3. Ga interstitial on a tetrahedral site bonded to
As atoms. Lowest formation energy for each defect indicated in bold print.

Distance Charge (q)
-3 -2 -1 0 +1 +2 +3

2.4 Å 9.821 7.789 6.000 4.449 3.201 2.316 2.597
4.6 Å 9.727 7.956 6.043 4.410 3.087 2.143 2.363
6.1 Å 9.951 7.839 5.979 4.395 3.124 2.235 2.438
7.2 Å 10.064 7.904 5.990 4.356 3.030 2.084 2.278

Figure 3-19. Calculated formation energies (Eform), as a function of the Fermi level (µe), for
TeAs+GaTetra[Ga−As] and the initial and relaxed structure of the closest cluster
configuration. Blue is for the defect complex with a distance of 2.5 Å between
sites, 4.7 Å is orange, 6.1 Å is yellow, 7.3 Å is purple and green is at an infinite
distance.

A Te substituted with an As atom and an As interstitial bonded to As atoms

(TeAs+AsTetra[As−As]) is simulated with the defects in nearest neighbor positions, see Figure

3-20. The As atom relaxed to a position where it bonds with a neighboring Ga atom. Table

3-11 and Figure 3-20 show that the defect formation energies are high and the formation

of this complex is unfavorable at any distance as the infinite complex has similar formation

energies.
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Table 3-11. TeAs+AsTetra[As−As] formation energies (Eform) in eV for Te doped GaAs with
charges (q) ranging from -3 to +3. As interstitial on a tetrahedral site bonded to
As atoms. Lowest formation energy for each defect indicated in bold print.

Charge (q)
-3 -2 -1 0 +1 +2 +3
9.925 7.978 6.314 5.014 3.985 3.196 3.744

Figure 3-20. Calculated formation energies (Eform), as a function of the Fermi level (µe), for
TeAs+AsTetra[As−As] and the initial and relaxed structure of the closest cluster
configuration. Blue is for the defect complex with a distance of 2.4 Å between
sites and orange is at an infinite distance.

A Te substituted on an As site and a Te interstitial bonded to Ga atoms

(TeAs+TeTetra[Te−Ga]) is simulated with the defects in nearest neighbor positions, see

Figure 3-21. The Te interstitial relaxes to a position where it can form a dumbbell with

the substituted Te atom. Table 3-12 and Figure 3-21 show that the defect formation energies

are high and formation of this complex is unfavorable at any distance as the infinite complex

has similar formation energies.

An As vacancy and a Te substituted on a Ga site (VAs+TeGa) is simulated with the

defects in first to fourth nearest neighbor positions. Table 3-13 shows that when the defects
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Table 3-12. TeAs+TeTetra[Te−Ga] formation energies (Eform) in eV for Te doped GaAs with
charges (q) ranging from -3 to +3. Te interstitial on a tetrahedral site bonded to
Ga atoms. Lowest formation energy for each defect indicated in bold print.

Charge (q)
-3 -2 -1 0 +1 +2 +3
9.821 7.859 6.247 4.881 3.848 3.947 4.458

Figure 3-21. Calculated formation energies (Eform), as a function of the Fermi level (µe), for
TeAs+TeTetra[Te−Ga] and the initial and relaxed structure of the closest cluster
configuration. The blue line is for the defect complex with an initial distance of
2.8 Å between sites and orange is at an infinite distance.

are in first nearest neighbor positions, 2.5 Å, the formation energy is lowest. The initial and

final structures for the complexes with 2.5 Å and 6.1 Å between the defects are shown in

Figure 3-22. In the 2.5 Å structure the Te atom moves into the As vacancy site, leaving a Ga

vacancy. This means that the defect has relaxed into a Ga vacancy and Te substitution on

an As site (VGa+TeAs), as in Figure 3-15. The plot shows that the formation energy of the

2.5 Å structure matches Figure 3-15. The defect in third nearest neighbor position, 6.1 Å,

relaxed into VGa+GaAs+TeGa. As this structure was not simulated it cannot be compared.

It is unlikely to form due to high formation energies across the band gap. All other distances

remain in the same configuration as their initial structure, have high defect formation energies
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Table 3-13. VAs+TeGa formation energies (Eform) in eV for Te doped GaAs with charges (q)
ranging from -3 to +3. Lowest formation energy for each defect indicated in bold
print.

Distance Charge (q)
-3 -2 -1 0 +1 +2 +3

2.5 Å 4.001 2.182 1.812 1.764 2.104 2.851 3.908
4.7 Å 7.673 6.527 5.841 5.441 5.246 5.316 5.437
6.1 Å 6.845 6.244 5.355 4.765 4.849 4.432 4.970
7.3 Å 7.701 6.530 5.837 5.441 5.237 5.265 5.425

Figure 3-22. Calculated formation energies (Eform), as a function of the Fermi level (µe), for
VAs+TeGa and the initial and relaxed structure of the closest cluster
configuration. Blue is for the defect complex with a distance of 2.5 Å between
sites, 4.7 Å is orange, 6.1 Å is yellow, 7.3 Å is purple and green is at an infinite
distance.

and are also unlikely to form. As the second and fourth nearest neighbor defects have almost

matching plots, no trend as the distance between defects increases can be observed. Despite

the lack of trend, they are close in magnitude to the infinite case, so it is assumed that the

formation energy of this defect complex will be high regardless of the distance between the

defects.

A complex consisting of two Te substitutions with As atoms (2TeAs) is simulated with Te

atoms occupying first to fourth nearest neighbour positions. Table 3-14 shows that for each
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Table 3-14. Two TeAs formation energies (Eform) in eV for Te doped GaAs with charges (q)
ranging from -3 to +3. Lowest formation energy for each defect indicated in bold
print.

Distance Charge (q)
-3 -2 -1 0 1 2 3

4.7 Å 7.260 5.174 3.354 1.808 0.572 -0.268 0.371
5.6 Å 7.208 5.133 3.311 1.773 0.544 -0.291 0.340
6.8 Å 7.184 5.090 3.274 1.730 0.492 -0.348 0.312
7.9 Å 7.173 5.097 3.273 1.740 0.517 -0.314 0.327

Figure 3-23. Calculated formation energies (Eform), as a function of the Fermi level (µe), for
two TeAs and the initial and relaxed structure of the closest cluster configuration.
Blue is for the defect complex with a distance of 4.7 Å between sites, 5.6 Å is
orange, 6.8 Å is yellow, 7.9 Å is purple and green is at an infinite distance.

configuration the defect formation energies vary less than 0.1 eV. This same trend is also seen

in Figure 3-23 with tightly packed minimum formation energy lines. Defect formation energies

are expected to be highest for defects in the first nearest neighbor positions due to the positive

charges of each Te ion repelling the other. However, at all distances the formation energies

become negative as µe approaches the VBM (µe = 0), indicating that 2TeAs is favorable

when the systems’ overall charge is q = +2. The lowest defect formation energy is when the

defects are in the third nearest neighbor position, 6.1 Å and q = +2. As the distance increases

between the two defects the formation energies approach that of the infinite distance defect.
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From the double defect complexes simulated only VGa+TeAs and 2TeAs defects have

negative formation energies when the system has a charge q = −2 and q = +2, respectively.

[VGa+TeAs]−2 is in agreement with the work by Gebauer et al. [12], who observed neutral

charged VGa+TeAs complexes on the surface of their material and theorized that the defect

can exist in the bulk with a q = −2. Additionally, this work found that the [2TeAs]+2 defect

complex is also a potential defect in the material. However, as 2TeAs is more favorable

with larger distances between the defects, the VGa+TeAs is expected to have a higher

concentration.

3.7.2 Triple Defect Complexes

Building on Sections 3.5, 3.6 and 3.7.1, VGa, TeAs, VGa-TeAs and 2TeAs are the only

defects with negative formation energies. In this section, the VGa-TeAs and 2TeAs are

expanded to a triple defects by adding these point defects. A TeInt[Te−Ga] was also added

to the VGa-TeAs, and a complex with a VGa and two TeInt[Te−Ga] is simulated to check that

the addition of high formation energy defects also results in high formation energy defect

complexes.

A Ga vacancy and two Te substitutions on As sites (VGa+2TeAs) is simulated with the

defects clustered in the smallest possible radius, see Figure 3-24. In Table 3-15 the lowest

defect formation energy is for the charge neutral system, with Eform = 0.698 eV, however

in Figure 3-24, the formation energy becomes negative for the system with a charge q = −1

as the Fermi level (µe) approaches the CBM. If the charges for the lowest energy individual

defects, V−3
Ga and Te+1

As , are added in the same ratio as the triple defect complex the resulting

charge, q = −1, is in agreement with the simulated lowest energy of the complex. The defects

at an infinite distance have higher defect formation energies (greater than 0.8 eV) and are

unlikely to form.

Two Ga vacancies and a Te substituted on an As site (2VGa+TeAs) were simulated with

the defect cluster in smallest possible radius. Table 3-16 shows that the defect formation

energies calculated are large and positive (greater than 7 eV), which is also seen in the closest
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Table 3-15. VGa+2TeAs formation energies (Eform) in eV for Te doped GaAs with charges (q)
ranging from -3 to +3. Lowest formation energy for each defect indicated in bold
print.

Charge (q)
-3 -2 -1 0 +1 +2 +3
4.311 2.398 0.871 0.698 0.904 1.451 2.343

Figure 3-24. Calculated formation energies (Eform), as a function of the Fermi level (µe), for
VGa+2TeAs. The blue line is for the defect complex with the closest distance
between sites (pictured) and orange is for the defects at an infinite distance.

cluster calculations in Figure 3-25, indicating the defect is unfavorable. However, when the

defects are at an infinite distance, the formation energy becomes negative as µe approaches

the CBM for the system with a charge q = −7. This highlights an issue with the addition of

point defect formation energies to find the formation energies of a complex at infinite distance;

a charge state of q = −7 is not physical. The charges of the lowest energy individual defects

add to q = −5. To create a charge state of q = −7, electrons would have to be stripped

from other atoms, which is very unlikely. So, despite the infinite-spaced cluster having a near

negative formation energy, this state is not physical and overall the complex is not expected to

form.

73



Table 3-16. 2VGa+TeAs formation energies (Eform) in eV for Te doped GaAs with charges (q)
ranging from -3 to +3. Lowest formation energy for each defect indicated in bold
print.

Charge (q)
-3 -2 -1 0 +1 +2 +3
8.454 7.857 7.339 7.643 7.990 8.122 9.046

Figure 3-25. Calculated formation energies (Eform), as a function of the Fermi level (µe), for
2VGa+TeAs. The blue line is for the defect complex with the closest distance
between sites and orange is for the defects at an infinite distance.

A Ga vacancy and two Te interstitials bonded to Ga atoms (VGa+2TeInt[Te−Ga]) was

simulated with the defects clustered in the smallest possible radius. Table 3-17 shows that

the defect formation energy is large and positive for all charges investigated, as expected from

combining two high formation energy defects ,TeInt, with VGa. In Figure 3-26, formation

energies remain positive regardless of distance between defects and the complex is unfavorable.

Table 3-17. Formation energies (Eform) in eV for VGa+2TeInt[Te−Ga] in Te doped GaAs with
charges (q) ranging from -3 to +3. Te interstitials sit on tetrahedral sites bonded
to Ga atoms. Lowest formation energy for each defect indicated in bold print.

Charge (q)
-3 -2 -1 0 +1 +2 +3
9.680 7.658 6.027 5.427 4.569 4.539 4.871
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Figure 3-26. Calculated formation energies (Eform), as a function of the Fermi level (µe), for
VGa+2TeInt[Te−Ga]. The blue line is for the defect complex with the closest
distance between sites and orange is for the defects at an infinite distance.

A Ga vacancy, Te substituted on an As site and a Te interstitial bonded to a Ga atoms

(VGa+TeAs+TeInt[Te−Ga]) is simulated with the Te atoms in first to third nearest neighbor

positions. Table 3-18 shows that the Te atoms in the third nearest neighbor position, 5.9 Å,

with a system charge of q = +2 have the lowest defect formation energy (1.83 eV) for µe at

the VBM. Figure 3-27 shows that this defect complex will always have a positive formation

energy, regardless of distance, and is not favorable.

Of the double and triple defect complexes simulated, the VGa+TeAs, 2TeAs and

VGa+2TeAs complexes were found to have negative formation energies and are expected

to form in GaAs. VGa+TeAs has a negative formation energy with a charge q = −2 over the

Table 3-18. Formation energies (Eform) in eV for VGa+TeAs+TeInt[Te−Ga] in Te doped GaAs
with charges (q) ranging from -3 to +3. Lowest formation energy for each defect
indicated in bold print.

Distance Charge (q)
-3 -2 -1 0 +1 +2 +3

2.6 Å 6.569 5.854 4.235 2.998 2.656 2.346 2.968
4.4 Å 7.746 5.697 3.971 2.648 2.124 2.095 2.804
5.9 Å 7.185 5.504 4.493 3.363 2.706 1.825 2.277
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Figure 3-27. Calculated formation energies (Eform), as a function of the Fermi level (µe), for
VGa+TeAs+TeInt[Te−Ga]. Blue is for the defect complex with a distance of 2.6 Å
between Te atoms, 4.4 Å is orange, 5.9 Å is yellow and at an infinite distance is
purple.

whole system when it is in nearest neighbor configuration and the Fermi level is near the CBM.

2TeAs has a negative defect formation energy with a charge q = +2 over the system when

the defects are spaced further apart from each other and the Fermi level is near the VBM.

VGa+2TeAs also has a negative defect formation energy with a charge q = −1 over the system

when the defects are in the closest cluster formation and the Fermi level is near the CBM.

3.8 Discussion of Defect Formation in Te Doped GaAs

The defect formation energies for intrinsic and extrinsic point defects, double defect

complexes and triple defect complexes in Te-doped GaAs have been investigated in a

systematic manner in Sections 3.5, 3.6, 3.7.1 and 3.7.2. A summary of the lowest formation

energies and charge states for the most likely defects, VGa, TeAs, VGa+TeAs, 2TeAs and

VGa+2TeAs, is given in Table 3-19. To illustrate Fermi level (µe) shift with an excess or dearth

of electrons the formation energies for the µe = V BM (dearth) and µe = CBM (excess)

are given. However, although the experimental band gap (1.5 eV) was used to generate the

formation energy vs. Fermi level plots and calculate the formation energies at µe = 1.5 eV,
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Table 3-19. Summary of formation energies (Eform) and charge states for the most favorable
defects in Te-doped GaAs. Lowest formation energy and charge state for each
defect is reported for the Fermi level (µe) at the VBM and CBM.

Defect µe = V BM µe = CBM
Charge (q) Eform (eV) Charge (q) Eform (eV)

VGa -1 2.90 -3 -0.64
TeAs +1 -0.27 -1 1.50
VGa+TeAs 0 1.77 -2 -0.64
2TeAs +2 -0.34 0 1.74
VGa+2TeAs 0 0.70 -1 -0.62

the band gap calculated with the LDA exchange correlation was 0.95 eV. It is not clear at

this point in time how the levels should be transformed to approximate the experimental band

gap. As such, the formation energies or charge states of defects at the CBM are expected to

change, potentially becoming more positive in both cases.

As the results have not been transformed to reflect the experimental band gap,

conclusions about defect st abilities as µe approaches the CBM can only be taken as

indications of what is expected to occur in the physical system. Te is a donor atom and

doping GaAs with Te is expected to add electrons to donor levels just below the conduction

band (CB), shifting the Fermi level towards the CB. It is assumed that the formation energies

calculated with µe approaching the CBM are expected to reflect the physical system.

Overall, the defects with the lowest formation energies are VGa with a charge of -3, and

VGa+TeAs with a system charge of -2, and formation energies of -0.64 eV. Negative charges

indicates there are excess electrons, which shift the Fermi energy closer to the CBM. Since

the formation energies are negative, these defect complex is expected to form with a high

concentration. The next lowest formation energy is for VGa+2TeAs, charge -1 with the Fermi

level near the CBM. 2TeAs, with a +2 charge on the system, is next with a formation energy

of -0.34 eV with the Fermi level near the VBM. The positive charge indicates the presence of

a hole in the band levels just above the valence band, shifting the Fermi energy closer to the

VBM. The last negative formation energy is for TeAs, which is -0.27 eV for a charge of +1 and
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Table 3-20. Transition levels (ϵ(qa/qb)) in eV for five most likely defects in Te doped GaAs
defects.

Defect Charge (q)
(+3/+2) (+2/+1) (+1/0) (0/-1) (-1/-2) (-2/-3)

VGa - - - -0.03 0.32 0.67
TeAs - - 1.05 1.46 - -
VGa + TeAs - - - 0.11 0.47 -
2TeAs - 0.84 1.24 1.54 - -
VGa + 2TeAs - - - 0.17 1.53 -

the Fermi level near the VBM. The small difference between these formation energies may be

within the uncertainty from the DFT calculations or the correction energy terms.

A more robust method for examining the stability of the defects relative to each other

than directly comparing formation energies is to calculate the transition levels, see Equation

2-22. The transition levels for the five favorable defects are reported in Table 3-20. Any

transition levels that fall outside of the band gap have been removed, however the full data is

reported in Table A-3 in Appendix A.

According to Freysoldt et al. [22], shallow defects occur within a few kBT of the VB or

CB, and deep defects occur near the middle of the band gap. Due to the uncertainty in the

transformation of the computed band gap to the experimental band gap, only shallow donor

transitions can be attested from Table 3-20. These include ϵ(0/ − 1) for the VGa defect,

at µe -0.03 eV, ϵ(0/ − 1) for the VGa+TeAs defect, at µe 0.11 eV, and possibly ϵ(0/ − 1)

for the VGa+2TeAs defect, at µe 0.17 eV. Additionally, if the Fermi level in the material is

below ϵ(qa/qb), then charge states with qa are more stable, and if it is above then charge

states with qb are more stable. From this statement, if the Fermi level approaches the VB,

V0
Ga, [VGa+TeAs]0 and [VGa+2TeAs]0 are expected to be stable defects. As the Fermi level

approaches the experimental band gap (CB), V−3
Ga, Te−1

As , [VGa+TeAs]−2, [2TeAs]−1 and

[VGa+2TeAs]−2 are expected to be more stable.

From Table 3-19 and the equation for defect concentration in the dilute limit, Equation

3-1, if the temperature is held constant a general understanding of the defect concentrations

with respect to the Fermi level shift can be made. Equation 3-1 is used to approximate the
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Table 3-21. Defect concentrations for the Fermi level at the VBM and CBM. c0i is the density
of lattice sites available to the defect in cm−3, and cD is the defect concentration
at T=800 K in cm−3.

Defect c0i (×1022 cm−3) cD (cm−3)
VBM CBM

VGa 2.22 11910 >2×1020

TeAs 2.22 >2×1020 7.87×1012

VGa+TeAs 2.22 1.6×1011 >2×1020

2TeAs 1.11 >2×1020 1.21×1011

VGa+2TeAs 1.11 4.31×1017 >2×1020

dilute limit defect concentrations in equilibrium (cD) with respect to the temperature of the

system [74–77]. It can be used up to the melting temperature of the material, after which the

concentration would exhibit non-Arrhenius behavior[22, 78]. c0i is the density of the lattice

sites available to the defect/s, Eform is the defect energy of formation from DFT, kb is the

Boltzmann constant (8.617×10−5 eV/K) and T is the temperature (in K). By holding the

temperature constant and calculating the concentrations for the defect formation energies

with the Fermi level at the VBM and CBM, the effect of the Fermi level shift on the defect

concentration trends can be observed.

cD = c0i exp[−Eform/kbT ] (3-1)

The density of the lattice sites available to the defects, c0i , is calculated as the total number

of lattice sites the defect can occupy in a unit cell divided by the volume of the unit cell. For

example, the total number of atomic sites in a unit cell of GaAs is eight, four Ga and four As.

The total density of sites, not including interstitials, is 8/(5.65 × 10−8 cm)3 = 4.44 × 1022

cm−3. As there are only four Ga sites, the numerator becomes 4 when calculating c0i for

VGa. Similarly, Te can only substitute with the four As atoms, there can only be a maximum

of four VGa+TeAs defects in a unit cell, two 2TeAs or two VGa+2TeAs. The c0i and defect

concentrations for these defects are reported in Table 3-21 for T = 800 K, which is the

approximate temperature Kennon et al.[55] grew their material.
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From Table 3-21, the concentration of VGa, VGa+TeAs and VGa+2TeAs defects increases

as the Fermi level shifts towards the CBM. Conversely, the concentration of TeAs and 2TeAs

decreases. Note, the calculated cD for VGa, VGa+TeAs and VGa+2TeAs at the CBM

would exceed the total density of sites (4.44 × 1022 cm−3), which is physically impossible.

Similarly, TeAs and 2TeAs would exceed the total density of sites at the VBM. This is due

to the assumption that formation energy is independent of concentration. This work also

does not take into consideration the law of mass action. As such, values in Table 3-21 are

approximations made for general trend observations. After growth of the doped semiconductor

the number of Te, Ga and As atoms in the material remain fixed. Since the concentration of

single and double TeAs defects decreases and the concentration of VGa+TeAs and VGa+2TeAs

complexes increases as the Fermi level shifts to toward the CBM it is concluded that TeAs

are combining with VGa to form complexes. This is possibly the source of the electrical

deactivation observed by Kennon et al. as the favorable charge states of VGa+TeAs and

VGa+2TeAs are q = −2 as the Fermi level approaches the CB, decreasing the number Te−1
As

and [2TeAs]−1 defects in the system and in addition to decreasing the number of electrons

available, and thus decreasing the activation of the semiconductor. This supports the work by

Kennon et al., who theorized that Te-point defect reactions are the likely cause of the observed

electrical deactivation.

In addition to the defect energetics, it was observed that the ’infinite’ distance defect

formation energies, which were calculated by adding the minimum formation energies of each

point defect in the complex, can be used in conjunction with the nearest neighbor complex

formation energy to establish boundaries on the defect formation energies. Generally, when the

defect complexes didn’t relax to another structure, the defect formation energies converged

on the infinite case as the distance between the defects increased. However, care must be

taken with the infinite distance defect, as unrealistic charge states can be calculated as in

TeAs+2VGa. This method allows for the trends in the formation energies of a complex to
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be estimated from the charged point defects before the charge states of the complex are

calculated.

3.9 Correction Energies

All correction energies (Ecorr), calculated with the sxdefectalign code, are reported in

the Appendix A, Table A-2. Figures 3-28 to 3-36 show the correction energies as a function

of defect charge (q). To observe patterns, the data points are fitted to quadratic functions,

indicated on each figure as the corresponding color lines.

Intrinsic defect correction energies are plotted in Figure 3-28. The correction energies for

both types of defects, vacancies and interstitials, follow the same trend with the vertex of the

vacancies between the neutral charge and q = +1, and for interstitials between the neutral

charge and q = −1. In the systems with more As atoms than Ga atoms the correction energies

are larger.

Figure 3-28. Correction energies (Ecorr) for intrinsic vacancies as a function of defect charge
(q). VGa correction energies are blue, VAs are orange, GaInt[Ga−Ga] are yellow and
AsInt[110−split As−As] are purple.

The correction energies for extrinsic defects are plotted in Figure 3-29. Similar trends

are observed for all defects with the formation energy vertexes between the neutral charge
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and q = −1. Generally, the formation energies are higher for extrinsic interstitials than

substitutions.

Figure 3-29. Correction energies (Ecorr) for extrinsic defects as a function of defect charge (q).
TeInt[Te−Ga] is in blue, TeInt[Te−As] is in orange, TeGa is in yellow, and TeAs in
purple.

The calculated correction energies for VGa+TeAs are plotted in Figure 3-30. Additionally,

the corrections for the constituent defects, VGa and TeAs, are also plotted. As the distances

between the defects changes there is a small spread of the energy correction terms, approximately

0.2 eV. Overall, the behaviour of the energy corrections for the complex are closer to that of

VGa, but fall between the corrections for VGa and TeAs.

The calculated correction energies for all VGa+TeInt defects are plotted in Figure 3-31,

however, as there was significant differences in the relaxed structures no conclusions about

trends of these correction energies can be made.

The calculated correction energies for TeAs+ various interstitials are plotted in Figure

3-32. Similar to VGa+TeAs, as the distances between the defects changes the energy correction

terms show a spread of approximately 0.2 eV. No trend can be observed in regards to the

interstitial atomic species.
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Figure 3-30. Correction energies (Ecorr) for VGa+TeAs as a function of charge (q). Blue is for
the defect complex with a distance of 2.5 Å between sites, 4.7 Å is orange, 6.1 Å
is yellow, and 7.3 Å is purple. Ecorr for VGa is in green and TeAs is in cyan.

Figure 3-31. Correction energies (Ecorr) for VGa+TeInt as a function of charge (q). Blue is for
the defect complex with a distance of 2.5 Å between sites, 2.8 Å is orange, 4.7 Å
is yellow, 4.9 Å is purple, 6.1 Å is green, and 6.3 Å is cyan.
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Figure 3-32. Correction energies (Ecorr) for TeAs+interstitials as a function of charge (q).
GaTetra[Ga−As] interstitials range in distance to the TeAs atom, where 2.5 Å is in
blue, 4.7 Å is orange, 6.1 Å is yellow, and 7.3 Å is purple. The AsTetra[As−As] is
green and the TeTetra[Te−Ga] is cyan.

The calculated correction energies for VAs+TeGa are plotted in Figure 3-33. As with

VGa+TeInt, as the relaxed structures had significant differences to the initial structures no

conclusions about these energy corrections can be made.

The calculated correction energies for two TeAs are plotted in Figure 3-34. Additionally,

the corrections for the single TeAs is plotted. The correction energies do not show a spread

as the distance between the defects changes, but instead are near equal. Interestingly, the

correction energy vertices of the double defects shift left to occur closer to the q = −1 charge

state, with the correction energies lower than that of the single defect for charge negative

states and higher for charge positive states.

All triple defect complex correction energies are plotted in Figures 3-35 and 3-36. Figure

3-36 also shows the corrections for the constituent defects, TeAs, TeInt[Te−Ga] and VGa. The

correction energies for TeAs+TeInt[Te−Ga]+VGa show the same spread of approximately 0.2

eV for the defects with different distances between them. Unlike VGa+TeAs, the correction
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Figure 3-33. Correction energies (Ecorr) for VAs+TeGa as a function of charge (q). Blue is for
the defect complex with a distance of 2.5 Å between sites, 4.7 Å is orange, 6.1 Å
is yellow and 7.3 Å is purple.

Figure 3-34. Correction energies (Ecorr) for two TeAs as a function of charge (q). Blue is for
the defect complex with a distance of 4.7 Å between sites, 5.6 Å is orange, 6.8 Å
is yellow and 7.9 Å is purple. The single TeAs defect is green.
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energies for eAs+TeInt[Te−Ga]+VGa do not fall between the correction energies of the individual

constituent defects.

Figure 3-35. Calculated correction energies for triple defect complexes in Te doped GaAs as a
function of defect charge (q). VGa+2TeAs is indicated by blue, 2VGa+TeAs by
orange and VGa+2TeInt[Te−Ga] by yellow. Data points are fit to quadratic
functions to generate the lines.

In summary, the only trend observe in the correction energy terms is that regardless of

the distance between distances, the calculated correction energies will be very similar for each

charge state. The correction energies will either be near equal, as in VAs+TeGa or 2TeAs, or

have a spread less than or equal to 0.2 eV, such as VGa+TeAs, VGa+TeInt, TeAs+IntX or

TeAs+TeInt[Te−Ga]+VGa.

3.10 Conclusions

The charged defect energetics of Te-doped GaAs are relevant to developing an understanding

of the mechanisms behind electrical deactivation. The Ga vacancy with a charge q = −3

(V−3
Ga), the Te substitution on As with a charge q = +1 (Te+1

As), the Ga vacancy-donor

complex (VGa+TeAs) with a charge q = −2 over the system, the double Te substitution on

As (2TeAs) with a charge q = +2 over the system, and the Ga-vacancy-double donor complex

(VGa+2TeAs) with a charge q = −1 over the system found to have negative formation energies
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Figure 3-36. Calculated correction energies for TeAs+TeInt[Te−Ga]+VGa in Te doped GaAs as a
function of defect charge (q). Blue is for the defect complex with a distance of
2.5 Å between sites, 4.4 Å is orange, and 5.9 Å is yellow. TeAs is purple,
TeInt[Te−Ga] is green and VGa is cyan.

indicating they are likely to form. These results agree with experimental work by Gebauer et al.

[12] who observed the V−3
Ga, Te+1

As and VGa+TeAs defects in Te-doped GaAs experimentally.

The charged defect formation energies as a function of the Fermi level were also explored.

Te is a n-type dopant, or a donor impurity, which will donate electrons to states just below the

CB, raising the Fermi level from the midpoint between the VBM and CBM to a level closer

to the CB. Hence, Te-doped GaAs is expected to defects with favorable charge transition

levels as the µe approaches the CB. As the Fermi level approaches the CB, the V−3
Ga, Te−1

As ,

[VGa+TeAs]−2, [2TeAs]−1 and [VGa+2TeAs]−2 are expected to be more stable.

As the Fermi level approaches the CB, the concentrations of VGa, VGa+TeAs and

VGa+2TeAs are expected to increase. Conversely, the concentrations of TeAs and 2TeAs are

expected to decrease. After growth of the doped semiconductor the number of Te, Ga and As

atoms in the system will not change. With this and the defect concentrations as a function of

µe in consideration, it was concluded that the TeAs and 2TeAs defects will form but will also
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combine with VGa to form VGa+TeAs or VGa+2TeAs defect complexes as the µe approaches

the CB.

In work by Kennon et al. [55], it was observed that during post-growth annealing

of supersaturated Te-doped InGaAs electrical deactivation occurred. In that work it was

postulated that the deactivation was likely caused by Te-Te clustering, which was not observed,

or Te-point defect reactions. The work in this chapter has shown that Te-point defect

reactions with VGa in GaAs are predicted to occur and their concentrations increase as

the Fermi level approaches the CB. The more favorable charge states of VGa+TeAs and

VGa+2TeAs is q = −2, in comparison to the most favorable charge state of VGa, q = −3.

By forming the Te-vacancy defect complexes the overall charge of the system will become less

negative, suggesting that in Te-doped GaAs their formation will lead to a decrease in electrical

activation. Similar behaviour in Te-doped InAs and InGaAs is expected. This supports the

conclusion of Kennon et al. that a group III vacancy-Te defect complex formation is the likely

mechanism behind the observed electrical deactivation.

The number of defect complexes spaced at different distances to be simulated can also

be minimized by calculating the ’infinite’ distance defect formation energies from the addition

of the point defect formation energies which form the complex. The formation energies for

different spaced defects fall between that of the nearest neighbor complex and the infinite

distance formation energies. From this it can be determined if the formation energies will

increase or decrease in comparison to the nearest neighbor complex, and if the complex

becomes more favorable as the distance between the defects increases. However, care must be

taken to ensure the charge states of the infinite defect complex can physically exist.

Finally, the only trend observed from the calculation of energy correction terms was that

for complexes with defects at varying distances the Ecorr either varied ≤ 0.2 eV or had equal

values across each charge state. Over all simulations there was no consistent relations between

the types of defects, atomic species or constituent defects of complexes and their calculated

Ecorr. This means that the infinite defect formation energy calculated by adding the formation
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energies of the constituent defects will not result in an accurate formation energy, and should

only be considered as a trend line to assess if further simulations are needed.

89



CHAPTER 4
THERMODYNAMIC PROPERTIES OF ZIRCONIUM HYDRIDE

Zirconium (Zr) alloys are commonly used as fuel cladding in nuclear reactors. Cladding

functions as a container for the fuel pellets which not only acts as an organizing structure

but also prevents the pellets from being in contact with the coolant. As such, cladding must

meet certain standards for mechanical properties. Zr-alloys are used due to their low thermal

neutron capture cross-section and the ability to act as a moderator. In light water reactors,

the Zr-alloys are in contact with the coolant water, which causes oxidation and hydrogen

(H) absorption by the clad. The absorption of H creates Zr-hydride precipitates, which are

detrimental to the mechanical properties of the clad. This reaction must be taken into account

during alloy design to prevent clad cracking and failure. Use of mesoscale simulations is

becoming standard in the design and prediction of nuclear fuel and clad performance under

reactor operating conditions.

Mesoscale simulations rely on accurate thermodynamic data to make predictions of

cladding behavior. The Zr-H system has been studied extensively in the past by both

experimental and first-principles techniques. However, there remains uncertainty in the

phase diagram as the H/Zr ratio approaches 2. This work aims to study the thermal stability

of Zr-H phases from first-principles techniques, including finite temperature effects with

phonon contributions, and to generate free energy surfaces as a function of temperature

and concentration. These free energy surfaces are intended for use by mesoscale modeling

techniques in addition to phase diagram generation.

4.1 Configuration of Structures

There are two allotropes of zirconium: the α-Zr phase, an hcp structure, and the high

temperature β-Zr phase, a bcc structure. The β-Zr phase develops above 863◦C, and since

current light water reactors have a maximum cladding operating of temperature 650◦C[79]

the β-phase has not been included in this work. In a two atom hcp unit cell there are two

octahedral interstitial sites and four tetrahedral interstitial sites, see Figure 4-1. Hydrogen
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Figure 4-1. Interstitial sites in hcp α-Zr. Zr atoms are represented by blue spheres and
interstitial sites by gray squares. Labels indicate either T or O for tetrahedral and
octahedral sites, respectively. The primitive unit cell is outlined in bold.

Table 4-1. Phase names, structures and space groups of Zr and Zr-H phases
Phase Structure Space group
α-Zr hcp P63/mmc
β-Zr bcc Im3̄m
ζ-Zr2H trigonal P3m1
γ-ZrH1−1.5 fct (c/a>1) (fluorite-like) P42/mmc
δ-ZrH1.3−1.7 fcc (fluorite-like) Fm3̄m
ϵ-ZrH1.7−2 fct (c/a<1) (fluorite-like) I4/mmm

has been observed experimentally to preferentially occupy tetrahedral interstitial sites in α-Zr

[80–82].

Experimentally observed hydrides include ζ-Zr2H, γ-ZrHx with the composition range

1 < x < 1.5, δ-ZrHx with 1.3 < x < 1.7, and ϵ-ZrHx, with 1.7 < x < 2. A list of

each Zr and Zr-H phase structure and spacegroup can be found in Table 4-1. The δ and

ϵ-hydrides are stable phases, while the γ-hydride is considered metastable, existing only

at lower temperatures[2, 83]. ζ-Zr2H was only recently observed, by Zhao et al. [6], who

suggest it is also metastable. Similar to α-Zr, theory and experiment suggest that in all

Zr-hydrides the H atoms preferentially sit in tetrahedral sites, as opposed to the octahedral

sites [6, 80–82, 84–87].
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Figure 4-2. H interstitial configurations for γ-ZrH, δ-ZrH1.5 and ϵ-ZrH2. Zr atoms represented
by blue spheres, H by pink and empty tetrahedral sites by gray squares.

Domain et al. [84] considered various configurations of the H interstitials in γ-ZrH

and found that the most stable structure had the H atoms occupy the tetrahedral sites

on the {110} plane and a c/a ratio of 1.1 (Figure 4-2A). The unit cell of δ-ZrHx cannot

accommodate the concentration x = 1.67, the most commonly observed phase experimentally

[87], as it has 4 Zr atoms and 8 H tetrahedral interstitial positions. Larger supercells with

approximately 100 atoms have been used previously to simulate x = 1.67 using Special

Quasi-random Structure generation [88]; however, previously simulations of this size were

considered too computationally expensive. Domain and others [84, 86, 87, 89, 90] commonly

used δ-ZrH1.5 as an approximation for x = 1.67, with 6 tetrahedral interstitial H atoms and

2 empty tetrahedral sites in the [111] direction (Figure 4-2B). ϵ-ZrH2 is simulated with all

tetrahedral interstitial sites filled by H (Figure 4-2C).

Zhao et al. [91] proposed a number of crystal structures for ζ-Zr2H with various

arrangements of H atoms in tetrahedral interstitial positions, of which the S2 structure

had the lowest formation energy (see Figure 4-3). As ζ-Zr2H is coherent with hcp α-Zr, a

cluster expansion (CE) using ζ-Zr2H as a lattice model wouldn’t be distinguishable from that

of the α-Zr lattice model and so has not been included in this work. If the ζ-Zr2H structures

are true ground states the CE generated by the hcp lattice model will indicate them as such.
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Figure 4-3. Three of the seven proposed structures for ζ-Zr2H by Zhao et al.[6]. H atoms
occupy different configurations of tetrahedral sites in two stacked α-Zr unit cells.
The total energy calculated by Zhao with DFT for each structure are -41.576 eV,
-41.710 eV and -41.479 eV, respectively. The structure with the lowest energy
(most stable) is the S2 structure.

4.2 Simulation Parameters

Zero temperature energetics were calculated using density functional theory as implemented

by VASP [19–21]. Total energies of α-Zr (hcp), and H2 (gas) structures were calculated

by carrying out geometry optimization on primitive cells with no symmetry constraints

and at constant pressure. All VASP calculations used projector augmented wave (PAW)

pseudopotentials [21, 59] with the GGA-PBE [92] exchange correlation supplied with the

VASP package. GGA-PBE was chosen as previous work by Domain et al. [84] showed that the

Local Density Approximation (LDA) [17] exchange correlation results in underestimated lattice

parameters in the Zr-H system in addition to predicting H occupying octahedral interstitial

sites in α-Zr, in conflict with experimental results[80–82]. GGA is better able to simulate the

observed experimental parameters and correctly predicts that H occupies the tetrahedral sites.

The GGA exchange correlation has been used as the standard for simulating Zr-H with ab-inito
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Figure 4-4. Convergence tests for α-Zr structure. A) ENCUT convergence: Red line indicates
at 500 eV precision became better than 1 meV per atom. B) KPOINT
convergence: Red line indicates number of k-points at which precision became
better than 1 meV per atom. For α-Zr this occurred at with a 9× 9× 4 (total of
324) k-point grid.

methods in recent years [89, 93–98]. In this work the pseudopotentials treated Zr 4s2p6d25s2

and hydrogen 1s1 electrons as valence.

Convergence tests for each Zr-H structure were run (Figures 4-4 through 4-7) and an

energy cutoff of 500 eV with a Methfessel-Paxton smearing width of 0.2 eV (recommended for

metals [99]) was chosen for the initial bulk calculations as they resulted in a precision better

than 1 meV per atom for all structures. The CEs used Methfessel-Paxton smearing to relax the

geometry of each structure, followed by a static calculation with the tetrahedron method with

Blöchl corrections to ensure accurate electronic density of states and total energy calculations.

A Γ-centered k-point density of 6000 k-points per reciprocal atom (KPPRA) was chosen as

most metals require a value of 5000-6000 KPPRA [45] to achieve an energy convergence of

less than 1 meV. This KPPRA translates to k-point grids of 12 × 12 × 7 for α-Zr and γ-ZrH,

and 13 × 13 × 13 for δ-ZrH2 and ϵ-ZrH2 primitive cells, all of which are much better than the

minimum number of k-points required from the convergence tests. These optimized structures

were used as the input geometries for the cluster expansion.
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Figure 4-5. Convergence tests for γ-ZrH structure. A) ENCUT convergence: Red line indicates
at 500 eV precision became better than 1 meV per atom. B) KPOINT
convergence: Red line indicates number of k-points at which precision became
better than 1 meV per atom. For γ-ZrH this occurred at with a 9× 9× 4 (total of
324) k-point grid.

Figure 4-6. Convergence tests for δ-ZrH2 structure. A) ENCUT convergence: Red line
indicates at 450 eV precision became better than 1 meV per atom. B) KPOINT
convergence: Red line indicates number of k-points at which precision became
better than 1 meV per atom. For δ-ZrH2 this occurred at with a 9× 9× 9 (total of
729) k-point grid.

4.3 Bulk Zr-H Phase Properties

Table 4-2 shows that the calculated lattice parameters for all phases agree with the

experimental values with less than 1% error. Energies of formation were calculated via the

equation[87]:

∆Ef =
1

a+ b

[
E{ZraHb} − aE{αZr} − b

1

2
E{H2}

]
(4-1)
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Figure 4-7. Convergence tests for ϵ-ZrH2 structure. A) ENCUT convergence: Red line indicates
at 450 eV precision became better than 1 meV per atom. B) KPOINT
convergence: Red line indicates number of k-points at which precision became
better than 1 meV per atom. For ϵ-ZrH2 this occurred at with a 9× 9× 9 (total of
729) k-point grid.

where E{ZraHb} is the total energy of the hydride as calculated by VASP, E{αZr} is the

energy per atom of α-Zr and 1
2
E{H2} is the energy of the H2 molecule per atom. E{αZr}

was calculated as -8.520 eV/atom and 1
2
E{H2} as -3.365 eV/atom. The total number of

atoms for each phase varies; hence to normalize the formation energies to eV/atom the number

of Zr atoms are represented by ’a’ and the number of H atoms by ’b’. The formation energies

calculated in this work are all within the ranges of values reported by the literature for all

phases. ϵ-ZrH2 has the lowest formation energy of -0.588 eV/atom, followed by δ-ZrH2 at

-0.577 eV/atom, δ-ZrH1.5 at -0.515 eV/atom and finally γ-ZrH with the highest formation

energy of -0.438 eV/atom. This trend of ϵ-ZrH2 having the lowest formation energy,γ-ZrH

having the highest and δ-ZrHx between them is also observed in other computational work

(Table 4-2).

4.4 Cluster Expansion

For the cluster expansion (CE), the MAPS code[36] uses the relaxed geometries from

VASP as inputs for the lattice models to describe the configurational disorder of the phases.

In the case of hydrides, the Zr sites remain filled by Zr atoms and the possible interstitial

positions for the H atoms are notated in such a way that they can be either filled with an H
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Table 4-2. Calculated lattice parameters (Å) and formation energies (eV/atom) for Zr-H
phases compared to values reported by literature. Lattice parameters for γ, δ and
ϵ-phases are reported for the structures converted to the fcc or fct structures similar
to that in Figure 4-2. All calculations used the GGA-PBE exchange correlation.

Structure Reference a c c/a ∆Ef

α-Zr Experimental [2] 3.232 5.148 1.593 -
This work 3.238 5.161 1.594 -
Domain [84] 3.23 5.18 1.603 -
Udagawa [86] 3.23 5.17 1.601 -
Lumley [87] 3.22 5.20 1.615 -
Olsson [89] 3.231 5.171 1.600 -
Christensen [90] 3.237 5.183 1.609 -
Experimental [2] 3.232 5.148 1.593 -

γ-ZrH Experimental [2] 4.596 4.969 1.08 -
This work 4.592 5.013 1.082 -0.438
Domain [84] 4.58 5.04 1.104 -0.507
Udagawa [86] 4.56 5.02 1.101 -0.489
Lumley [87] 4.57 5.01 1.096 -0.44
Olsson [89] 4.58 5.02 1.096 -0.392
Christensen [90] 4.586 5.022 1.095 -0.417

δ-ZrH1.5 This work 4.728 4.886 1.033 -0.515
Domain [84] 4.79 - 1.0 -0.594
Udagawa [86] 4.77 - 1.0 -0.566
Lumley [87] - - - -
Olsson [89] 4.77 4.80 1.006 -0.464
Christensen [90] - - - -

δ-ZrH2 Experimental [2] 4.780 - 1.0 -
This work 4.809 - 1.0 -0.577
Domain [84] 4.82 - 1.0 -0.671
Udagawa [86] - - - -
Lumley* [87] 4.78 - 1.0 -0.53
Olsson [89] - - - -
Christensen [90] 4.821 - 1.0 -0.548

ϵ-ZrH2 Experimental [2] 4.969 4.596 0.925 -
This work 4.998 4.422 0.885 -0.588
Domain [84] 5.01 4.44 0.886 -0.678
Udagawa [86] 4.99 4.41 0.884 -0.641
Lumley [87] 5.00 4.42 0.884 -0.59
Olsson [89] 5.01 4.42 0.882 -0.53
Christensen [90] 5.002 4.458 0.891 -0.557

* Values cited are for the special quasi-random structure of δ-ZrH1.67. Lattice parameters
have been averaged.
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Figure 4-8. Example of lattice model input for the hcp unit cell and the end members (hcp-Zr
and hcp-ZrH2) generated by MAPS. Blue atoms indicate Zr atom sites, pink
indicates H and grey indicates empty sites. The lattice model is inputted so that Zr
atom sites will always be filled and the H/empty sites will be filled according to the
H concentration and calculated clustering.

atom or left empty, according to the H concentration. MAPS then uses VASP to calculate the

total energies of the end members for each structure inputted for the initial CE. The term ’end

members’ refers to the structures with all interstitial H positions filled or empty. An example

of the end members for the hcp structure, hcp-Zr and hcp-ZrH2, with H only filling tetrahedral

interstitial sites, is illustrated in Figure 4-8. The VASP input parameters remain the same as

outlined in Section 4.3.

The user guide for the MAPS code recommends three stopping criteria to ensure a well

fit CE expansion[45]. The first is that the cross-validation score (CV, Equation 2-25) is less

than 25 meV to ensure that the fitted CE is able to accurately predict new ground states.

The second criteria is flagged by the code and indicated in the log file. That criteria is that

”Among structures of known energy, true and predicted ground states agree”, which should

additionally result in a low CV-score, and ”No other ground states of xx atoms/unit cell or less
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exist”, which means that the fitted CE has not predicted any new ground states in structures

containing xx number of sites. Finally, the last criteria is that the magnitude of the effective

cluster interaction parameter (ECI, Section 2.2.2.1) decays as a function of the number of

sites in a cluster and the maximum distance between any two atoms in the cluster, showing

that the long range interactions are decreasing. MAPS also allows the user to disregard any

structures with a lattice stain greater than a specified percentage from the fit. The user

guide recommends on the fly removal of structures with strains greater than 10% to ensure

no relaxation to other phases. In this work, 10% strain is used as a guide for removal in

conjunction with monitoring predicted ground states for relaxation to other space groups. If

the CE tends to relax to other space groups the strain is further limited.

4.4.1 HCP Lattice Model

The CE for the hcp ZrHx lattice model was initially set to find ground states from 0 ≤

x ≤ 2, and with hcp-Zr and hcp-ZrH2 (Figure 4-8) as the end members and formation energy

reference states. Once five ground states were found but the fit was no longer improving, the

analysis of 1 < x ≤ 2 concentrations was stopped. The 1 < x ≤ 2 range was expected to

have grounds states with lower formation energies from the other lattice models. The fitting of

the CE was continued in the range of 0 ≤ x ≤ 1 to see if the ζ-Zr2H could be predicted as a

ground state. Once the stopping criteria were met, the initial five ground states remained the

only ground states found by MAPS. Additionally, structures with a lattice strain greater than

10% were removed from the fit (24 structures in total) as it progressed.

The CE predicted a total of 43324 structures, Figure 4-9A, of which 181 were then

calculated with VASP, Figure 4-9B. Comparisons between the formation energies from the

fit and the first-principles calculations are shown in Figures 4-10A and 4-11B. The number

of atoms in these structures range up to 24, and no other ground states were found for

structures up to 30 atomic sites. The cross-validation score was 6.3 meV, much smaller than

the recommended maximum value, and represents a very good fit. Figure 4-10B shows that

the magnitude of the ECI mostly decays as a function of the number of sites in a cluster. The
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Table 4-3. Ground state structures, lattice parameters (Å) of the primitive cell and formation
energies (eV/atom) from the hcp lattice model fitted CE. Formation energies are
calculated with Equation 4-1 and with α-Zr phase and H2 (gas) as reference. They
include the formation energies calculated by VASP (DFT) and the energies fitted by
the CE (MAPS). Space groups found with pymatgen with tolerance set to 0.1.

Structure Space
group

a b c ∆Ef

(DFT)
∆Ef

(MAPS)
α-Zr P63/mmc 3.23 3.23 5.17 0.0 0.02
ZrH P 3̄m1 3.26 3.26 5.66 -0.36 -0.35
Zr2H3 (ZrH1.5) P 3̄m1 3.28 3.28 11.66 -0.41 -0.41
Zr3H5 (ZrH1.67) P 3̄m1 3.28 3.28 17.68 -0.43 -0.43
ZrH2 P63/mmc 3.29 3.29 6.00 -0.45 -0.46

residuals of the fit are shown graphically in Figure 4-11A, and have a spread of less than 0.06

eV/H site.

The calculated ground states in Figure 4-9B are shown in Figure 4-12. They are α-Zr,

ZrH, ZrH1.5, ZrH1.67 and ZrH2. The space groups, lattice parameters and formation energies

from VASP and the CE are reported in Table 4-3. The CE correctly found the α-Zr and ZrH2

phases as hexagonal structures, however the other structures were identified as trigonal. From

Figure 4-12 and the reported lattice parameters, the ZrH, ZrH1.5 and ZrH1.667 phases are

observed to be coherent with the hcp phases.

The CE also found the three structures Zhao et al.[91] proposed for the ζ-Zr2H ground

state in Figure 4-3. As in Zhao et al., the S2 structure was found to have the lowest internal

energy, -42.154 eV per simulation cell. The S1 structure has an energy of -42.023 eV and the

S3 structure -41.922 eV, which also follow the trend shown by Zhao. When the formation

energies of the ζ-structures are calculated with α-Zr and hcp-ZrH2 replacing the reference

states in Equation 4-1, their values are positive (0.018 eV/atom, 0.001 eV/atom and 0.030

eV/atom for S1, S2 and S3 respectively). Positive formation energies lie above the convex hull

in Figure 4-9C, which uses the same reference states, and so the ζ-Zr2H structure was not

predicted as a ground state by MAPS.
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Figure 4-9. Predicted, and fitted formation energies (eV/H site), referenced to hcp-Zr and
hcp-ZrH2, from the hcp-lattice model fitted CE. A) Shows the energies predicted
by the CE, blue circles, and energies fitted by the CE, orange crosses. B) Shows
the formation energies calculated by VASP, green circles, and the final ground
states, red crosses.
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Figure 4-10. Formation energies calculated with VASP and residuals of the fit of the fcc-lattice
model fitted CE. A) Compares the VASP formation energies, green circles, with
the CE fitted energies, orange crosses. B) Shows the ECI generally decrease as
the number of sites in the clusters increases.
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Figure 4-11. Residuals of the fit and fitted vs calculated formation energies of the hcp-lattice
model fitted CE. A) Shows the spread of the residuals of the fit range over 0.06
eV/H site. B) Compares the fitted formation energies (eV/H sites) to the
formation energies (eV/H site) calculated by VASP.
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Figure 4-12. Resulting ground states from the hcp-Zr lattice model fitted CE. Blue indicates Zr
atoms and pink indicate H atoms. The hcp-Zr structure (left) matches that of
α-Zr.

4.4.2 FCT (c/a>1) Lattice Model and Addition of Octrahedral Interstitial Sites

The fct (c/a>1) ZrHx lattice was used to test whether including octrahedral interstitial

sites in a lattice model would result in different ground states being predicted. CEs were fit

for three different interstitial site lattice models, one with only octrahedral sites, one with only

tetrahedral sites and one with both, see Figure 4-13. Due to the total number of interstitial

sites available in each lattice model, the concentration ranges were 0 ≤ x ≤ 1 for the

octrahedral model, 0 ≤ x ≤ 2 for the tetrahedral model, and 0 ≤ x ≤ 3 for the combined

model. In all cases, structures with lattice strain greater than 10% were removed as the fits

progressed. All were fitted until they had a CV-score less than 25 meV (octrahedral 15.3 meV,

tetrahedral 17.2 meV, combined 23.3 eV). The octrahedral model and combined model were

both stopped once it was determined that including octrahedral sites does not result in ground

states with H atoms occupying octrahedral positions in the range of 0 ≤ x ≤ 2.

Figure 4-14 shows the formation energies of the ground states predicted by the three fct

(c/a>1) lattice models. Formation energies were calculated using the total energy of each
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Figure 4-13. Lattice model inputs for the fct (c/a>1) unit cells. Blue atoms indicate Zr atom
sites, pink/gray sites indicate potential H or empty sites. Three different lattice
models were tested; octrahedral interstitial sites, tetrahedral interstitial sites and a
combination of both (from left to right).

structure from VASP calculations and Equation 4-1. The octrahedral only model convex hull is

above the other two models, indicating that the model with only octrahedral interstitial sites

does not produce true ground states. The combined model predicts the same ground states

as the tetrahedral site only model (sits on the same points as the yellow line) up to x = 2,

indicating that the low energy ground states only have H atoms occupying tetrahedral sites. As

the 2 < x ≤ 3 concentration is beyond the scope of this work, using lattice models with only

tetrahedral sites is acceptable, and preferable in terms of computational cost.

Continuing with the tetrahedral interstitial sites only model, the CE was fit until all

stopping criteria were met, resulting in three ground states. A total of 13 structures with a

lattice strain greater than 10% were removed from the fit. The final fit included 37 structures

calculated by VASP and predicted no additional ground states with 30 or more atomic sites.

Similar figures to Figure 4-9 and 4-10 with the ATAT results for the tetrahedral interstitial

site only fct (c/a>1) lattice model are in Appendix B. The calculated ground states are shown

in Figure 4-15. They are Zr, γ-ZrH and ZrH2. The space groups, lattice parameters and

formation energies from VASP and the CE are reported in Table 4-4. The CE correctly found
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Figure 4-14. Convex hulls generated by CEs of the fct (c/a>1) lattice models. Octrahedral
interstitial sites only are in blue, octrahedral and tetrahedral interstitial sites are in
orange, and tetrahedral interstitial sites only are in yellow. Formation energies are
all calculated with α-Zr and H2 (gas) as references.

the γ-ZrH structure with space group P42/mmc and H interstitials occupying tetrahedral

sites on the {110} plane. However, the structure for the Zr relaxed to Fm3̄m, the same space

group as the δ-phase, and ZrH2 relaxed to I4/mmm, the space group of the ϵ-phase. As the

Zr formation energy is positive and larger than α-Zr, this structure is unlikely to form and can

be discarded. If c/a for ZrH2 is calculated the result is 1.57, which implies that this structure

remains as fct (c/a>1).

4.4.3 FCC (Fluorite) Lattice Model and Effects of Changing Strain Limitations on
CE

The MAPS code allows for the lattice stain constraints to be specified in order to prevent

relaxation into other phases. To explore if relaxation into either the γ or ϵ-phases could be

prevented the fcc lattice model was tested with structures of high and low strain removed. The

fcc lattice model (Figure 4-16) CE was set to search the range 0 ≤ x ≤ 2 for ground states
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Figure 4-15. Resulting ground states from the fct (c/a>1) lattice model with tetrahedral
interstitial sites only fitted CE. Blue indicates Zr atoms and pink indicates H
atoms. The ZrH structure (middle) matches that of γ-ZrH.

Table 4-4. Ground state structures, lattice parameters (Å) of the primitive cell and formation
energies (eV/atom) from the fct (c/a>1) lattice model fitted CE. Formation
energies are calculated with Equation 4-1 and with α-Zr phase and H2 (gas) as
reference. They include the formation energies calculated by VASP (DFT) and the
energies fitted by the CE (MAPS). Space groups found with pymatgen with
tolerance set to 0.1.

Structure Space
group

a b c ∆Ef

(DFT)
∆Ef

(MAPS)
Zr Fm3̄m 3.21 3.21 4.52 0.04 0.08
γ-ZrH P42/mmc 3.24 3.24 5.00 -0.44 -0.42
ZrH2 I4/mmm 3.28 3.28 5.15 -0.58 -0.58

with structures of lattice strains greater than 10% and 4% being removed as the fit progressed.

Once all stopping criteria had been met, the fcc lattice model with strain limited to 10% found

four ground states, Zr, ZrH, ZrH1.88 and ZrH2, see Figure 4-17 and Table 4-5. The fcc lattice

model with strain limited to 4% also found four ground states, Zr, ZrH1.67, ZrH1.86 and ZrH2,

Figure 4-18 and Table 4-6. The Zr and ZrH2 structures from both strains are the same and are

fcc structures, space group Fm3̄m, similar to the δ-phase.
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Figure 4-16. Conventional and primitive unit cells for fcc ZrH2. The primitive cell was used as
the lattice model input for the CE. Blue atoms indicate Zr atom sites, pink/gray
sites indicate potential H or empty sites.

The CE limited to 10% strain found ZrH with space group P42/mmc, similar to the

γ-ZrH phase. The lattice parameters differed from γ-ZrH by 0.01-0.02 Å, which agrees with

the structure relaxing to the γ-fct (c/a>1) phase. ZrH1.88 relaxed to the triclinic P1 structure;

however, addition of a H atom to the structure to create Zr8H16, for the purposes of analyzing

the space group with pymatgen, identifies the phase as I4/mmm with a = b = 3.53 Å and

c = 4.42 Å. This is similar to the ϵ-fct phase with the exception that c/a>1. In summary, the

CE limited to 10% strain found δ-phase like end members, Zr and ZrH2, the ZrH phase relaxed

to a γ-like structure and ZrH1.88 relaxed to an ϵ-like structure.

The CE limited to 4% strain found ZrH1.67 with the space group C2/m. Addition of

two H atoms to the structure to create Zr6H12 does not change the the space group after

analysis, and it remains as the monoclinic C2/m. Although the CE identified a ZrH1.67 phase,

which is most commonly observed H concentration, it did not find the fcc δ-ZrH1.67 phase.

ZrH1.86 relaxed to the trigonal R3 structure. Addition of an H atom to the structure to create

Zr7H14 identifies the phase as Fm3̄m with a = b = c = 4.80 Å, which is the same structure

as the δ-phase. In summary, the CE limited to 4% strain found three ground states with
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Figure 4-17. Resulting ground states from the fcc lattice model with strain limited to 10%.
Blue indicates Zr atoms and pink indicates H atoms. The ZrH2 structure (right)
matches that of δZrH2.

Table 4-5. Ground state structures, lattice parameters (Å) of the primitive cell and formation
energies (eV/atom) from the fcc lattice model fitted CE ground states with strain
limited to 10%. Formation energies are calculated with Equation 4-1 and with α-Zr
phase and H2 (gas) as reference. They include the formation energies calculated by
VASP (DFT) and the energies fitted by the CE (MAPS). Space groups found with
pymatgen with tolerance set to 0.1.

Structure Space
group

a b c ∆Ef

(DFT)
∆Ef

(MAPS)
Zr Fm3̄m 3.20 3.20 3.20 0.04 0.02
ZrH P42/mmc 3.23 3.23 5.02 -0.44 -0.49
Zr8H15 (ZrH1.88) P1 5.66 6.00 7.06 -0.57 -0.54
ZrH2 Fm3̄m 3.40 3.40 3.40 -0.58 -0.58

the fluorite-like fcc δ-structure, Zr, ZrH1.86 and ZrH2, and the ZrH1.67 phase relaxed to a

monoclinic C2/m structure.

The results of the CEs for the fcc lattice model with high and low strains show that

setting a lower strain limitation, in this work 4%, can prevent predicted ground states from

relaxing into the γ or ϵ-phases. It must be noted, however, that even with the strain limited to

4% the CE predicted a ground state with the C2/m space group. Both the ZrH and ZrH1.88

structures from the CE limited to 10% strain relaxed into γ and ϵ-phases, respectively. Figure

4-19 shows the formation energies from the DFT calculations for both strains. In general,
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Figure 4-18. Resulting ground states from the fcc lattice model with strain limited to 4%. Blue
indicates Zr atoms and pink indicates H atoms. The ZrH2 structure (right)
matches that of δZrH2.

Table 4-6. Ground state structures, lattice parameters (Å) of the primitive cell and formation
energies (eV/atom) from the fcc lattice model fitted CE ground states with strain
limited to 4%. Formation energies are calculated with Equation 4-1 and with α-Zr
phase and H2 (gas) as reference. They include the formation energies calculated by
VASP (DFT) and the energies fitted by the CE (MAPS). Space groups found with
pymatgen with tolerance set to 0.1.

Structure Space
group

a b c ∆Ef

(DFT)
∆Ef

(MAPS)
Zr Fm3̄m 3.20 3.20 3.20 0.04 0.02
Zr6H10 (ZrH1.67) C2/m 5.84 5.84 5.94 -0.54 -0.54
Zr7H13 (ZrH1.86) R3 5.86 5.86 5.86 -0.56 -0.57
ZrH2 Fm3̄m 3.4 3.40 3.40 -0.58 -0.58

the convex hull from the CE limited to 10% strain is slightly more favorable, except for when

H/Zr=1.67. However, due to the 10% strain CEs’ inability to predict a fcc-phase between

the end members, the 4% strain CE will be used in this work. It is assumed that if a CE

limited to a higher strain is able to predict a ground state with the correct space group for an

experimentally observed H concentration, then the CE is sufficient. If it is not able to meet this

criteria then a CE with a lower constraint on the strain must be calculated.

The cluster expansion with lattice strains limited to less than 4% removed a total of 67

structures from the fit. 78 structures were included in the final fit. The CV score was 4 meV

and the largest simulation cell predicted included 27 atoms. Similar figures to Figure 4-9 and

4-10 with the ATAT results for the 4% strain fcc lattice model are in Appendix B. However,
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Figure 4-19. Convex hulls generated by CEs of the fcc (fluorite) lattice models with tetrahedral
interstitial sites. Formation energies are all calculated with α-Zr and H2 (gas) as
references.

the CE predicted new ground states with 30 atoms or more in the cell which were not explored.

According to the author of the ATAT code, Prof. A. van de Walle, if the criteria of predicting

no new ground states is not met it will not prevent the finite temperature energetics from

being calculated [100]. No long range order in the H sublattice of δ-ZrHx has been observed

experimentally, so there is the possibility that the CE would continue to predict ground states

beyond cells with 30 atoms or more. This CE had been calculating for approximately 25,000

core hours, and had met all criteria other than predicting new ground states, when finite

temperature calculations were attempted and found the CE sufficient, see Section 4.5.

4.4.4 FCT (c/a<1) Lattice Model Results

The lattice model for the fct (c/a<1) CE (Figure 4-20) searched the range 0 ≤ x ≤ 2

for ground states. Structures with lattice strains greater than 12% were disregarded. A total of

154 structures were removed, resulting in 49 structures included in the final fit. The CV score
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Figure 4-20. Lattice model for the fct (c/a<1) CE. Blue atoms indicate Zr atom sites,
pink/gray sites indicate potential H or empty sites.

was 9 meV and there were no new ground states predicted in cells containing up to 21 atomic

sites. Similar figures to Figure 4-9 and 4-10 with the MAPS results for the fct (c/a<1) lattice

model are in Appendix B.

The CE predicted three ground states, shown in Figure 4-21. They include Zr, Zr2H3 and

ϵ-ZrH2. The CE was able to correctly find the ϵ-ZrH2 phase with the I4/mmm space group.

The Zr structure relaxed to Fm3̄m, similar to the δ-phase, and ZrH1.5 relaxed to C2/M .

With the addition of two H atoms to the ZrH1.5 structure, for analyzing the space group with

pymatgen, the phase is identified as I4/mmm, with a = b = 3.54 Å and c = 4.27 Å. This

is an ϵ-fct phase with c/a>1. Overall, the CE identified two ground states with the ϵ-phase

structure and the Zr structure as a δ-like structure. The convex hull created from the ground

states and Equation 4-1 is shown in Figure 4-22.

4.4.5 Zero Temperature Energetics Summary

In order to directly compare the convex hulls, the formation energies were calculated with

respect to α-Zr and H2 as in Equation 4-1. The results are shown in Figure 4-23. The final
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Table 4-7. Ground state structures, lattice parameters (Å) of the primitive cell and formation
energies (eV/atom) from the fct (c/a<1) lattice model fitted CE. Formation
energies are calculated with Equation 4-1 and with α-Zr phase and H2 (gas) as
reference. They include the formation energies calculated by VASP (DFT) and the
energies fitted by the CE (MAPS). Space groups found with pymatgen with
tolerance set to 0.1.

Structure Space
group

a b c ∆Ef

(DFT)
∆Ef

(MAPS)
Zr Fm3̄m 3.20 3.20 3.20 0.04 0.04
Zr2H3 (ZrH1.5) C2/M 6.04 6.04 3.26 -0.52 -0.52
ϵ-ZrH2 I4/mmm 3.33 3.33 3.33 -0.59 -0.59

Figure 4-21. Resulting ground states from the fct (c/a<1) lattice model. Blue indicates Zr
atoms and pink indicates H atoms. The ZrH2 structure (right) matches that of
ϵZrH2.

Zr-H ground states over the range of 0 ≤ x ≤ 2 are α-Zr, γ-ZrH, ϵ-ZrH1.5, δ-ZrH1.67 and

ϵ-ZrH2 at 0K. All of these phases have been observed experimentally except for the ϵ-ZrH1.5.

The region around this concentration has been experimentally observed as a two-phase γ-δ

region. The δ-phase is nearing the convex hull of the ϵ-phase in the 1.67 ≤ x ≤ 1.86 range,

and is estimated to be less than 10 meV higher than the ϵ-phase. This difference is very small

and given that room temperature corresponds to approximately 25 meV, it suggests that either

δ or ϵ-phases may form in this range and both are metastable [101]. It is also possible that one
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Figure 4-22. Convex hull generated by CE of the fct (c/a<1) lattice model. Formation
energies calculated with α-Zr and H2 (gas) as references.

may become more stable than the other at higher temperatures, which will be explored through

finite temperature effects in the following section.

4.5 Monte Carlo Simulations and Total Energy Surfaces

Monte Carlo methods were used to calculate the finite temperature energetics with

respect to configurational disorder in the Zr-H system. Vibrational effects are discussed

in Section 4.6. The EMC2 code [38] was developed alongside the MAPS code, as part of

the ATAT package [36], to allow automation of this process. It requires the lattice models,

ECI, cluster information and ground states outputted by the MAPS code. EMC2 then uses

semi-grand canonical Monte-Carlo simulations (Section 2.2.3) to calculate each phase’s free

energy surface via thermodynamic integration. In practice, the user specifies which ground

state to focus on, the range of temperatures and chemical potentials over which the stable free

energy surfaces are to be calculated, a radius used to determine the smallest possible supercell

that would fit a sphere of the given radius inside the supercell and the precision to which the
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Figure 4-23. Convex hulls generated by all the CEs. Formation energies are all calculated with
α-Zr and H2 (gas) as references. The hcp-ZrH1.67 ground state was removed
because it was above the hcp-convex hull when calculated with these reference
energies, hence not a true ground state.

composition is calculated. Additionally, EMC2 normalizes the chemical potentials such that the

absolute values are not required. For example, chemical potential µ = 3, an integer, stabilizes a

two-phase equilibrium between ground state 2 and 3 , making the range of chemical potentials

to explore ground state x =3 be simplified to (x − 0.5 = 2.5) ≤ µ ≤ (x + 1.5 = 4.5), see

Figure 4-24.

In this work the Monte Carlo simulations were run from 100 K to 1000 K in steps of 10 K,

with each simulation cell containing a sphere of at least 50 Å3. Chemical potentials changed

in steps of 0.04 and the precision of the concentration was set to 0.001. The code was also

set so that simulations were run for ground states of each lattice model from the CEs which

didn’t relax to a different space group to find the statistical averages of concentration and

temperature at which each were stable. The code outputs the Gibbs free energy for each stable
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Figure 4-24. Example of chemical potential normalization in relation to ground state references
from the MAPS code.[Adapted from van de Walle et al. [102] and used with
permission.]

concentration and temperature with the end members for each lattice model as the references.

For the purposes of comparison and further manipulation of the data, this work has converted

the output from EMC2 to Gibbs free energy with respect to α-Zr and H2 (gas).

Figure 4-25 shows the EMC2 results of the hcp lattice model. The α-Zr ground state

(H/Zr=0 at T=0 K) shows a large region of stability with all Gibbs free energies below zero

(-0.32 eV/atom to 0 eV/atom) for 0 ≤ T ≤ 1000 K. The other ground states predicted by the

CE relaxed to different space group structures and were not been simulated with the MC code.

The α-Zr is stable in the range 0 < H/Zr < 0.7.

The EMC2 results of the fct (c/a>1) lattice model are shown in Figure 4-26. γ-ZrH was

the only predicted ground state which didn’t relax to a different space group, and was the only

ground state to be simulated with the MC code. γ-ZrH free energy ranges from -0.37 eV to

-0.48 eV for 0.8 ≤ H/Zr ≤ 1.3. The γ-ZrH phase becomes unstable above 400 K, as seen by

the absence of stable structures above 400 K at H/Zr=1, suggesting it is a low temperature

metastable phase.
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Figure 4-25. Results from MC simulations of the hcp-lattice model. Each point is a stable
structure with statistical averages of concentration and temperature calculated by
MC methods. A) The configurational Gibbs free energy (eV) of stable structures
as a function of temperature (K) and concentration (H/Zr). B) Stable structures
as a function of temperature and concentration.
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Figure 4-26. Results from MC simulations of the fct (c/a>1)-lattice model. Each point is a
stable structure with statistical averages of concentration and temperature
calculated by MC methods. A) The configurational Gibbs free energy (eV) of
stable structures as a function of temperature (K) and concentration (H/Zr). B)
Stable structures as a function of temperature and concentration.
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The initial results from the EMC2 calculations for the fcc lattice model are in Figure 4-27.

The results show that the ZrH1.67 ground state has unrealistically high Gibbs free energies

and any differences in the energies of the other ground states are lost due to the scale. The

unrealistically high values suggest that the state is not stabilized by the chemical potentials

within the range (x − 0.5) ≤ µ ≤ (x + 1.5) and is disordered in the H sublattice. The MC

calculations for the ZrH1.67 structure were rerun as a disordered structure, which resulted in

energies similar to fcc-ZrH1.86, see Figure 4-28. The fcc model Gibbs free energies range from

-0.52 eV to -0.58 eV for 1.47 ≤ H/Zr ≤ 1.97.

Figure 4-29 shows the EMC2 results of the fct (c/a<1) lattice model. ϵ-ZrH2 was the

only predicted ground state which didn’t relax to a different space group, and was the only

ground state to be simulated with the MC code. Its Gibbs free energies range from -0.54

eV/atom to -0.59 eV/atom for 1.41≤ H/Zr ≤ 2. At 300 K the ϵ-ZrH2 phase has a lower Gibbs

free energy than the δ-phase for the range 1.7 ≤ H/Zr ≤ 2, as shown in Figure 4-30. ϵZrH2 is

expected to be the most stable phase at H/Zr=2, which is supported by the low energies in the

range of 1.9 ≤ H/Zr ≤ 2.

The ATAT package also includes the PHB code [36, 38] which runs two MC simulations

simultaneously in order to find the temperature-concentration phase boundary between two

different phases. Using the same simulation settings as the EMC2 code, the PHB code was

used to find the phase boundaries between the α, γ, δ and ϵ-phases, Figure 4-31. The α-Zr

phase boundary is indicated by a purple line, γ-ZrH by orange, δ-ZrHx by yellow and ϵ-ZrH2

by blue. However, these calculations have not been normalized so that the phase boundary

formation energies are calculated with respect to the same reference energies. As such,

directly comparing the different phases isn’t ideal and the following observations are assumed

to only serve as approximate. The from 0 K to 210 K the diagram indicates there is a two

phase α-γ region for H/Zr≤ 1, and a two phase γ-δ region for 1 ≤H/Zr≲ 1.67. γ-ZrH

forms a line compound up to 210 K. From 0 K to 340 K there is a two phase δ-ϵ phase for

1.67 ≲H/Zr≲ 2. Above 210 K, α-Zr forms a two phase region with either δ-ZrHx or ϵ-ZrHx.
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Figure 4-27. Results from MC simulations of the fcc-lattice model. Each point is a stable
structure with statistical averages of concentration and temperature calculated by
MC methods. A) The configurational Gibbs free energies (eV/atom) of stable
structures as a function of temperature (K) and concentration (H/Zr). B) Stable
structures as a function of temperature and concentration.
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Figure 4-28. Results from MC simulations of the fcc-lattice model. Each point is a stable
structure with statistical averages of concentration and temperature calculated by
MC methods. A) The configurational Gibbs free energies (eV/atom) of stable
structures as a function of temperature (K) and concentration (H/Zr). B) Stable
structures as a function of temperature and concentration.
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Figure 4-29. Results from MC simulations of the fct (c/a<1)-lattice model. Each point is a
stable structure with statistical averages of concentration and temperature
calculated by MC methods. A) The configurational Gibbs free energies (eV/atom)
of stable structures as a function of temperature (K) and concentration (H/Zr).
B) Stable structures as a function of temperature and concentration.
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Figure 4-30. Free energy surfaces as a function of concentration for T = 300 K. Results from
hcp lattice model in blue, fct (c/a>1) in orange, fcc in yellow and fct (c/a<1) in
purple.

The two phase region above 210 K cannot distinguished between α-δ or α-ϵ due to the use of

different reference energies, as mentioned above.

4.6 Phonon Calculations

Lumley et al. [87] and Besson et al. [93] suggest that phonons play an important role in

the phase order of the γ, δ and ϵ Zr-H phases. Lumley concluded that vibrational contributions

may be a factor in increasing the stability of the δ-phase while Besson proposed that the

inclusion of phonon effects may decrease the γ-phase stability. To investigate the effect of

adding phonons in the Zr-H system, the vibrational free energy was calculated using first

principles phonon calculations under the harmonic approximation. The harmonic approximation

assumes that the energy is a function of atomic displacement only [39]. It cannot accurately

describe volume-dependent effects, such as thermal expansion and heat capacity [62], which

can instead be calculated with quasi-harmonic approximation (QHA). It is envisioned that this

work can be expanded on in the future to include volume-dependent effects.
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Figure 4-31. Phase diagram calculated by the PHB code. Note, data used to generate this
phase diagram only includes configurational contributions. The α-Zr phase
boundary is indicated by a purple line, γ-ZrH by orange, δ-ZrHx by yellow and
ϵ-ZrH2 by blue.

Phonopy [39] is the code used in this work to calculate the phonon energies by the finite

displacement method (FDM). Each ground state for each lattice model was used to generate

roughly cubic supercells with symmetry-nonequivalent atomic distortions. Each supercell was

then used to calculate the force constants with fixed-ion VASP calculations. Once all the

fixed-ion calculations finished, Phonopy was used to generate force sets to calculate the force

constants and thermal properties of each ground state.

An example of the phonon free energy for the ϵ-ZrH2 structure calculated by Phonopy is

shown in Figure 4-32 from 0 to 800 K. The free energy curve is in good agreement with work

by Chattaraj et al. [103], who found the the free energy of ϵ-ZrH2 to be approximately 0.47

eV at T = 0 K, and 0.11 eV at T = 800 K. This work found F = 0.46 eV at T = 0 K, and

0.11 eV at T = 800 K. Similar curves to Figure 4-32 were calculated for each ground state and

used to fit a phonon free energy surface for each lattice model. Figure 4-33A shows the fitted

phonon free energy surface for the hcp lattice model and the calculated phonon free energies
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Figure 4-32. Calculated phonon free energies for ϵ-ZrH2 (eV).

(blue circles) of each of the ground states. The phonon energy surfaces fitted with polynomial

functions for each lattice model. These polynomials can be used to estimate the phonon free

energy for a structure given its temperature and H concentration. To generate the total Gibbs

free energy surfaces with both configurational and vibrational effects the estimated phonon free

energy is added to the configurational free energies from Section 4.5.

The surface in Figure 4-33A is a polynomial surface, Equation 4-2, of degree 3 in both T

an X, where T is the temperature in K, X is the concentration, H/Zr, and Evib is the phonon

free energy per atom. Details of the error values for this fit are reported in Table 4-8 and the

residuals of the fit are shown in Figure 4-33B. The phonon free energies for the α-Zr become

negative around 185 K, hcp-ZrH at 610 K, hcp-ZrH1.5 at 760 K, hcp-ZrH1.67 at 810 K and

hcp-ZrH2 at 875 K. The phonon free energy decreases as temperature increases, but increases

as H content increases. These trends are observed in all lattice models, Figures 4-34, 4-35 and
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Figure 4-33. Phonon free energy surface for the hcp lattice model ground states. A) Blue
circles indicate the phonon free energies calculated by Phonopy, the surface is the
fit from Equation 4-2. B) Shows the residuals of the fit.
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Table 4-8. Degree of fitted polynomial variables and error values for phonon energies of Zr-H
structures. Errors include coefficients of determination (R2) and root mean squared
(RMS) values.

Structure Degree of polynomial variable R2 RMS
T X

hcp 3 3 0.9999 0.002
fct (c/a>1) 3 2 1.0 0.0016
fcc (fluorite) 3 2 0.9993 0.0066
fct (c/a<1) 3 2 1.0 0.0015

4-36.

Ehcp
vib (T,X) = 0.1193 + (−0.1677)T + 0.155X + (−0.03665)T 2 + (−0.004639)TX+

(−0.0007193)X2 + 0.004325T 3 +−0.006038T 2X + 0.001739TX2 + (−0.004218)X3 (4-2)

Figure 4-34A shows the calculated phonon free energies of the ground states from the

fct (c/a>1) lattice model. The surface is fitted with Equation 4-3, with the degrees of the

polynomial variables and error values reported in Table 4-8. The residuals of the fit are shown

in Figure 4-34B. The phonon free energies for fct (c/a>1)-Zr become negative around 160

K, γ-ZrH at 660 K, and fct (c/a>1)-ZrH2 at 920 K. The change to negative phonon energies

occur at higher temperatures for H/Zr=1 and 2 than that of the same concentrations in the

hcp lattice model.

E
fct(c/a>1)
vib (T,X) = 0.09745 + (−0.1629)T + 0.1906X + (−0.03352)T 2 + (−0.001477)TX+

(−0.0103)X2 + 0.00459T 3 + (−0.006023)T 2X + (−0.001868)TX2 (4-3)

Figure 4-35A shows the calculated phonon free energies of the ground states from the

fcc (fluorite) lattice model. The surface is fitted with Equation 4-4, with the degrees of

the polynomial variables and error values reported in Table 4-8. The residuals of the fit are

shown in Figure 4-35B. The phonon free energies for fcc-Zr become negative around 150 K,

fcc-ZrH1.67 at 830 K, δ-ZrH1.88 at 870 K, and fcc-ZrH2 at 930 K. The change to negative

phonon energies occurs at higher temperatures for H/Zr=2 than the hcp and fct (c/a>1)
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Figure 4-34. Phonon free energy surface for the fct (c/a>1) lattice model ground states. A)
Blue circles indicate the phonon free energies calculated by Phonopy, the surface
is the fit from Equation 4-3. B) Shows the residuals of the fit.
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lattice models.

Efcc
vib (T,X) = 0.1597 + (−0.1698)T + 0.2015X + (−0.03653)T 2 + (0.004924)TX+

(0.01008)X2 + 0.00395T 3 + (−0.005903)T 2X + (0.004384)TX2 (4-4)

Figure 4-36A shows the calculated phonon free energies of the ground states from the

fct (c/a<1) lattice model. The surface is fitted with Equation 4-5, with the degrees of the

polynomial variables and error values reported in Table 4-8. The residuals of the fit are shown

in Figure 4-36B. The phonon free energies for fct (c/a<1)-Zr become negative around 160 K,

fct (c/a<1)-ZrH1.5 at 810 K, and ϵ-ZrH2 at 920 K. The change to negative phonon energies

occurs at the same temperature for H/Zr=2 as the fct (c/a>1) lattice model, but is 10 K

lower than the fcc lattice model.

E
fct(c/a<1)
vib (T,X) = 0.1345 + (−0.1621)T + 0.1946X + (−0.03482)T 2 + (−0.002431)TX+

(−0.01038)X2 + 0.004298T 3 + (−0.006245)T 2X + (−0.002641)TX2 (4-5)

4.7 Free Energy Surfaces

The total Gibbs free energy is calculated by adding the configurational, electronic and

vibrational Gibbs free energies;

Gtotal = Gconfig +Gele +Gvib (4-6)

In this work the electronic contribution is assumed to be small and has not been calculated.

The configurational contribution was calculated in Section 4.5. With Equations 4-2, 4-3,

4-4 and 4-5 for estimating the phonon free energies per atom at specific temperatures and

concentrations, the phonon Gibbs free energies are calculated for all stable structures from the

MC simulations as the vibrational contribution.

The total Gibbs free energies in Figures 4-37, 4-38, 4-39 and 4-40 were generated with

α-Zr and H2 (gas) as reference states. . These can be used to create G−X curves from which

129



Figure 4-35. Phonon free energy surface for the fcc (fluorite) lattice model ground states. A)
Blue circles indicate the phonon free energies calculated by Phonopy, the surface
is the fit from Equation 4-5. B) Shows the residuals of the fit.
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Figure 4-36. Phonon free energy surface for the fct (c/a<1) lattice model ground states. A)
Blue circles indicate the phonon free energies calculated by Phonopy, the surface
is the fit from Equation 4-5. B) Shows the residuals of the fit.
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Figure 4-37. Total free energies for α-Zr. Reference states are α-Zr and H2 (gas).

a phase diagram can be generated using the common tangent method. An example of the

G −X curves for temperatures ranging from 100 K to 900K are shown in Figure 4-41 and an

example of common tangent construction in Figure 4-42.
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Figure 4-38. Total free energies for γ-ZrH. Reference states are α-Zr and H2 (gas).
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Figure 4-39. Total free energies for δ-ZrHx. Reference states are α-Zr and H2 (gas).
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Figure 4-40. Total free energies for ϵ-ZrH2. Reference states are α-Zr and H2 (gas).
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Figure 4-41. Temperature sequence of G-X curves for Zr-H system. α-phase indicated by blue,
γ by orange, δ by green and ϵ by purple.
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Figure 4-42. Example of common tangent construction for the G-X curves at 300K. Common
tangent lines are drawn between the α-phase (blue) and γ-phase (orange), the
γ-phase and the δ-phase (green), and the δ-phase and the ϵ-phase (purple).

4.8 Conclusions

Although a phase diagram has not been constructed at this point in time, the example of

common tangent construction in Figure 4-42 shows how the range of stability for each phase

can be estimated. In comparison to experimental phase diagrams, Figures 1-4, 4-43 and 4-44,

in this work the α-phase has a wider region of stability at high temperatures, showing stability

to approximately 0.65 wt.% H, or 40 atomic % H. The γ-phase is found to be stable below

400 K, forming a line compound below 200 K at 1 wt.% H. This suggests the γ-phase is low

temperature phase, and corresponds to the phase diagrams of Figures 4-43 and 4-44. It may

form as the temperature of the cladding increases after insertion into a reactor, but is unlikely

to form at operating temperatures as they are generally higher than 400 K. The δ-phase forms

from 0 to approximately 300 K, with a over a range extending from 1.71-1.85 wt.% H at 100

K to 1.67-1.78 wt.% H at 300 K, which similar to some experimental phase diagrams, Figures

4-44 and 1-4 (1999DUP). Interestingly, above 300 K the range of stability for the δ-phase
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Figure 4-43. Zirconium-Hydride phase diagram published by Simnad et al.[7]. [Used with
permission from Simnad et al.[7]]

widens to 1.47 to 2 wt.% H at 900 K, which has also been experimentally observed but at

higher temperatures, Figures 4-43 and 1-4 (1990Zuz). Finally, the ϵ-phase is stable at 1.9-2

wt.% H from 0 K to 300 K.

These free energy surfaces are intended for use by mesoscale modeling techniques. In

future work it is intended that the surfaces will be fit with a Gibbs free energy functional, as a

function of temperature and concentration. Once a functional is fitted, code can be developed
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Figure 4-44. Zirconium-Hydride phase diagram published by Zhong et al.[8]. [Used with
permission from Zhong et al.[8]]

to calculate the phase diagram. However, the differences in this work to some experimental

results suggest that the sensitivity of the calculated free energies are significant. The energy

differences between the phases is often on the order of 50 meV or less, and a small uncertainly

in the energies of two phases may lead to a large uncertainty in a calculated phase diagram. It

is recommended that these results be combined with experimental work before fitting to create

more physically accurate functionals and phase diagrams. Additionally, as only the harmonic

approximation was used for calculating phonon energies, work studying the quasi-harmonic

vibrational contributions should also be undertaken.
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CHAPTER 5
SUMMARY AND CONCLUSION

This dissertation has addressed two important problems. First, density functional theory

has been used to investigate the formation of charged defect structures in Tellurium doped

Gallium Arsenic semiconductors in an effort to increase the understanding of the mechanisms

causing electrical deactivation in the material. Second, the thermodynamic properties of the

Zirconium-Hydride system were modeled in order to calculate the Gibbs free energy surfaces

from first principles methods for use with mesoscale modeling techniques. From the free energy

surfaces free energy functionals can be fitted and phase diagrams can be generated.

5.1 Tellurium Doped Gallium Arsenide

In Chapter 3, the formation of charged defects in Tellurium (Te)-doped Gallium Arsenide

(GaAs) was studied to gain insight in to the mechanisms behind electrical deactivation. In

addition to the defect energetics of the system, a workflow for simulating charged intrinsic

and extrinsic point defects and defect complexes was developed. From observations of the

defect energetics, the estimation of the formation energy of the defects at ’infinite’ distances

is suggested in order to minimize the total number of calculations required in future studies

of a similar nature. Finally, the suitability of the Freysoldt, Neugebauer and Van de Walle

(FNV) method of calculating correction energies accounting for periodic image interactions was

assessed.

The most likely defects to form, from lowest formation energies (Eform) up, are; the

Ga vacancy with Eform = −0.64 eV for charge q = −3 (V−3
Ga), as the Fermi level (µe)

approaches the conduction band (CB), a Ga vacancy and Te substituted with an As atom with

Eform = −0.64 eV for charge q = −2 on the system ([VGa+TeAs]−2), as µe approaches the

CB, a Ga vacancy and two Te atoms substituted with As atoms with Eform = −0.62 eV for

charge q = −1 on the system ([VGa+2TeAs]−1), as µe approaches the CB, two Te atoms

substituted with As atoms with Eform = −0.34 eV for charge q = +2 ([2TeAs]+2), as µe

approaches the valence band (VB), and a Te substituted with an As with Eform = −0.27 eV
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for charge q = +1 on the system (Te+1
As), as µe approaches the VB. This is in agreement with

experimental observations that found the V−3
Ga, TeAs and VGa+TeAs defects [12, 73].

This work also showed that the charge states of defects varied as the Fermi level shifts

either towards the VB or CB. Te-doped GaAs is an n-type semiconductor, indicating the

presence of electrons in levels just below the CB and a µe also near the CB. Defects predicted

to be more stable as µe approaches the CB are V−3
Ga, Te−1

As , [VGa+TeAs]−2, [2TeAs]−1 and

[VGa+2TeAs]−2.

The defect concentration of VGa expected to increase as µe approaches the CB.

Conversely, concentration of TeAs and 2TeAs are predicted to decrease as µe approaches

the CB. As the number of Te atoms in the material remains constant, but the concentrations

of TeAs and 2TeAs are predicted to decrease, it is theorized that the Te substitutional defects

react with VGa to form defect complexes. Supporting this theory, the concentrations of the two

complexes, VGa+TeAs and VGa+2TeAs, are expected to increase as µe approaches the CB. The

formation of Te-Ga vacancy complexes also leads to the charges across the system becoming

less negative, as the most favorable complexes have a charge q = −2. This supports the

conclusion of Kennon et al. [55] that the formation of group III vacancies-Te defect complexes

result in electrical deactivation.

More work can be done to further support and refine the conclusion that group III

vacancies-Te point defect reactions are the likely mechanism behind electrical deactivation

in Te-doped GaAs. As mentioned in Chapter 3, it is well known that the LDA exchange

correlation underestimates the band gaps. Now that the lowest formation energy states have

been identified, this could be overcome by simulating them with hybrid functionals. This would

also allow for the band structures to be studied in more detail and the Fermi level, conduction

band maximum (CBM) and valence band minimum (VBM) to be determined with more

accuracy. The VBM and CBM, in conjunction with the the law of mass action and vibrational

contributions can be used to refine the defect concentrations as a function of temperature.

Finally, the energy barriers to diffusion of the constituent atoms and vacancies, as well as the
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binding energies of the defects can be calculated to further understand the kinetics of defects

in the system.

The work by Kennon et al. [55] pertains to electrical deactivation observed in Te-doped

Indium Gallium Arsenide (InGaAs) after post-growth heat treatments. To extend this work to

the InGaAs system in the future, it is recommended that a similar study for Te-doped InAs is

preformed. Although defect formation energetics are likely to be very similar to the work herein

as both Ga and In are group III ions, the differences in atomic radii and occupied electron

shells is expected to influence the defect formation energies. The atomic radius of In is larger

than Ga, 155 pm in comparison to 130 pm, and has a fully filled fourth shell and electrons

occupying 4s24p1 subshells. Te-doped InGaAs is also expected to have defect energetic values

somewhere between that of GaAs and InAs. Directly studying the energetics of InGaAs would

require simulations of large supercells to ensure period images of defects do not interact.

The number of bonding environments for defects will also double, increasing the number of

simulations required. It is recommended that the Te-doped InGaAs energetics are studied last

so that trends observed in defect energetics in Te-doped GaAs and InAs can be used to limit

the number of simulations required.

The workflow developed in this work can be employed in future efforts to model similar

systems. It was found that favorable defect complexes were combinations of the favorable

point defects, and so point defects should be simulated first and used to determine likely defect

complexes. The addition of the minimum formation energies of the constituent defects for any

µe will allow the formation energies for the defects at infinite distances to be estimated. This

will help in determining if the defects prefer to be closer or further apart. The combination of

these steps will allow for modelling of similar systems with a minimum number of simulations.

It was also determined that the FNV method is suitable for calculating the periodic energy

correction for defect complexes if a plateau is observable in in the short-range potential,

between the periodic images of the defect. This indicates the short and long-range effects have

been separated.
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5.2 Zirconium Hydride

In Chapter 4, the Gibbs free energy surfaces for the Zr-H system, including configuration

and vibrational contributions, were generated from first principles calculations, statistical

mechanical techniques and finite displacement methods. The cluster expansion (CE) method

coupled with density functional theory (DFT) was used to find the ground states in the range

of 0 to 2 wt.% H for the four different lattice models which have been experimentally observed

in the Zr-H system. The cluster information and effective cluster interactions generated

by the CEs was inputted into a semi-grand canonical Monte-Carlo (MC) simulation to

generate finite temperature effects due to configurational disorder. Phonon free energies were

calculated for the ground states found by the CEs by the finite displacement method under

the harmonic approximation. The resulting energies were fitted as a function of temperature

and concentration so that the vibrational free energy could be calculated and added to the

configurational free energies of the stable structures found by the MC simulations. From the

total configurational and vibrational energies the Gibbs free energy surfaces were constructed

and trends in phase stability could be garnered.

The CE for the hcp Zr-H phases found five ground states, of which only the α-Zr and hcp

ZrH2 phases did not relax to different structures. The CE also found three of the proposed

ζZr2H structures, suggested by Zhao et al. [6] to be a new ground state in the Zr-H system.

However, as they had formation energies higher than the convex hull it was concluded that

they are not ground states. The CE for the fct (c/a>1) lattice model was used to determine

that including octrahedral interstitial H sites in the lattice models is not required, and correctly

found the γ-ZrH ground state. The fcc (fluorite-like) CE required a tighter constraint on lattice

strain (4% as opposed to 10%) to find the δ-ZrH1.67 ground state without relaxing to another

structure. The ability of the CE to predict more ground states beyond structures with 30

atoms or more indicated that the δ-ZrH1.67 may be disordered in the H sublattice. The fcc CE

also found δ-ZrH1.86 to be a ground state. The fct (c/a<1) CE only found the ϵ-ZrH2 phase to

be stable, with the other ground states relaxing to different structures.
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MC simulations of the finite temperature effects for the ground states from the CEs which

did not relax into different structures were calculated. The α-Zr phase was found to have a

wide range of stability for high temperatures, approximately ranging 0 to 0.66 wt.% H at 900

K. The γ-ZrH phase was found to be stable only below 400 K, suggesting it is a metastable

low temperature phase. The δ-ZrH1.67 phase initially produced unrealistically high energies.

The structure was simulated with a disordered H sublattice, which resulted in energies similar

to that of the δ-ZrH1.86 phase. Both phases appeared to be line compounds. The ϵ-ZrH2 phase

was found to be stable at 0 K; however, as the temperature increased its range of stability

expanded slightly and shifted towards 1.4 wt.% H at 1000 K.

Phonon free energies were calculated and added to the configurational free energy

contributions calculated by the MC simulations. This energy can be used to construct Gibbs

free energy surfaces and estimates of the range of stability of the phases were made. Similar

to the estimates made using just the configurational entropy from the MC simulations, the

α-Zr shows a wide range of stability for high temperatures, which is not seen experimentally.

The γ-ZrH phase continues to be predicted as a metastable phase, existing as a line compound

below 200 K. This is in agreement with some experimental works. The δ-ZrH1.67 phase is

predicted to be a form below 300 K in the 1.67 to 1.85 wt.% H range. As its temperature

increases above 300 K its range of stability widens to 1.47 to 2 wt.% H. Finally, the ϵ-ZrH2

phase is only predicted to be stable below 300 K and with high H concentrations, 1.9 to 2

wt.% H. Experimental phase diagrams show different ranges of stability for both the δ and ϵ

phases, of which some support the results from this work.

Due to the differences between this work and experimental works, it is suggested that

these results are combined with experimental works in order to create a more accurate phase

diagram for the Zr-H system. Once experimental results are included it will be possible to fit

Gibbs free energy functionals which should accurately capture the physics of the system for use

in mesoscale modelling techniques. Finally, to increase the accuracy of the simulated data, the
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inclusion of volume-dependent effects should be added as vibrational contributions calculated

with quasi-harmonic approximation.
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APPENDIX A
TE DOPED GAAS SUPPLEMENTAL DATA

Data in Table A-1 calculated with Equation 2-1, below, for stoichiometric conditions using

chemical potentials listed in Table 3-2, below.

Eform[X
q] = Etot[X

q]− Etot[bulk
0]−

∑
i

niµi + qEF + Ecorr (2-1)

Data in Table A-3 calculated with Equation 2-22, also below.

Table 3-2. Calculated chemical potentials and energies of bulk Ga, As, Te and GaAs. Chemical
potentials in the bulk, µ(bulk), for Ga, As and Te are in eV per atom and energy per pair of bulk
GaAs, EGaAs(bulk) is in eV per formula unit.
System Energy (eV per atom or formula unit)
µGa -3.93
µAs -5.71
µTe(bulk) -3.80
EGaAs(bulk) -9.64

ϵ(qa/qb) =
Eform(X

qa ;EF = 0)− Eform(X
qb ;EF = 0)

qb − qa
(2-26)
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Table A-1. Defect formation energies (Eform) in eV for Te doped GaAs defects. Calculated
with Equation 2-1 and chemical potentials of the bulk elements.

Defect Distance Charge (q)
-3 -2 -1 0 +1 +2 +3

VGa - 3.842 3.175 2.856 2.884 3.244 3.949 5.002
VAs - 5.275 4.237 3.526 3.070 2.810 3.214 3.451
GaI - 8.426 6.364 4.583 3.124 2.104 2.497 3.218
AsI - 8.765 6.821 5.250 4.239 3.382 3.854 3.998
TeI[Te−Ga] - 10.799 8.873 7.434 6.360 5.621 5.242 5.242
TeI[Te−As] - 9.253 7.271 5.576 4.255 3.960 4.246 4.915
TeAs - 6.039 4.008 2.246 0.789 -0.265 0.165 0.957
TeGa - 7.278 5.294 4.552 3.232 2.318 2.419 3.033
VGa + TeAs 2.5Å 4.113 2.348 1.879 1.768 1.992 2.597 3.534

4.7Å 4.700 2.929 2.422 2.283 2.475 3.023 3.914
6.1Å 4.839 3.049 2.537 2.371 2.543 3.074 3.960
7.3Å 4.796 3.044 2.584 2.454 2.621 3.228 4.181

VGa + TeI[Te−X] 2.5Å 7.244 5.289 3.726 2.882 2.611 2.443 3.058
2.8Å 6.736 5.358 4.123 3.166 2.318 2.417 3.028
4.7Å 7.037 5.109 4.207 2.844 1.850 1.927 2.465
4.9Å 7.137 6.462 6.461 6.348 6.590 7.141 7.824
6.1Å 7.923 6.740 5.750 5.571 5.753 6.235 4.062
6.3Å 7.535 6.865 6.104 5.945 6.144 6.666 7.505

TeAs +GaI 2.5Å 9.821 7.789 6.000 4.449 3.201 2.316 2.597
4.7Å 9.727 7.956 6.043 4.410 3.087 2.143 2.363
6.1Å 9.951 7.839 5.979 4.395 3.124 2.235 2.438
7.3Å 10.064 7.904 5.990 4.356 3.030 2.084 2.278

TeAs + AsI 3.2Å 9.925 7.978 6.314 5.014 3.985 3.196 3.744
TeAs + TeI 2.7Å 9.821 7.859 6.247 4.881 3.848 3.947 4.458
VAs + TeGa 2.5Å 4.001 2.182 1.812 1.764 2.104 2.851 3.908

4.7Å 7.673 6.527 5.841 5.441 5.246 5.316 5.437
6.1Å 6.845 6.244 5.355 4.765 4.849 4.432 4.970
7.3Å 7.701 6.530 5.837 5.441 5.237 5.265 5.425

2TeAs 4.7Å 7.260 5.174 3.354 1.808 0.572 -0.268 0.371
5.6Å 7.208 5.133 3.311 1.773 0.544 -0.291 0.340
6.8Å 7.184 5.090 3.274 1.730 0.492 -0.348 0.312
7.9Å 7.173 5.097 3.273 1.740 0.517 -0.314 0.327

VGa + 2TeAs - 4.311 2.398 0.871 0.698 0.904 1.451 2.343
2VGa + TeAs - 8.454 7.857 7.339 7.643 7.990 8.122 9.046
VGa + 2TeI[Te−Ga] - 9.680 7.658 6.027 5.427 4.569 4.539 4.871
VGa+TeAs+TeI[Te−Ga] 2.6Å 6.569 5.854 4.235 2.998 2.656 2.346 2.968

4.4Å 7.746 5.697 3.971 2.648 2.124 2.095 2.804
5.9Å 7.185 5.504 4.493 3.363 2.706 1.825 2.277
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Table A-2. Correction energies (Ecorr) in eV for Te doped GaAs defects.
Defect Distance Charge (q)

-3 -2 -1 0 +1 +2 +3
VGa - 1.389 0.705 0.229 0.000 -0.017 0.193 0.651
VAs - 1.215 0.565 0.199 0.000 -0.012 0.135 0.495
GaI - 0.783 0.303 0.043 0.000 0.178 0.585 1.221
AsI - 0.873 0.377 0.045 0.000 0.233 0.731 1.485
TeI[Te−Ga] - 0.873 0.377 0.045 0.000 0.233 0.731 1.485
TeI[Te−As] - 0.609 0.191 -0.017 0.000 0.254 0.743 1.443
TeAs - 0.678 0.239 0.013 0.000 0.201 0.595 1.182
TeGa - 0.855 0.345 0.072 0.000 0.211 0.705 1.464
VGa + TeAs 2.5Å 1.239 0.633 0.211 0.000 0.024 0.297 0.792

4.7Å 1.290 0.667 0.222 0.000 0.010 0.255 0.726
6.1Å 1.311 0.671 0.231 0.000 0.006 0.251 0.729
7.3Å 1.197 0.585 0.196 0.000 0.006 0.333 0.891

VGa + TeI[Te−X] 2.5Å 0.846 0.345 0.062 0.000 0.226 0.721 1.485
2.8Å 0.936 0.387 0.062 0.000 0.205 0.701 1.449
4.7Å 0.570 0.143 -0.001 0.000 0.233 0.753 1.551
4.9Å 0.594 0.145 -0.024 0.000 0.248 0.719 1.386
6.1Å 0.987 0.397 0.030 0.000 0.201 0.621 1.602
6.3Å 0.954 0.297 0.001 0.000 0.228 0.681 1.350

TeAs +GaI 2.5Å 0.657 0.187 -0.014 0.000 0.239 0.687 1.323
4.7Å 0.783 0.315 0.041 0.000 0.184 0.587 1.224
6.1Å 0.636 0.195 -0.016 0.000 0.245 0.711 1.347
7.3Å 0.765 0.291 0.030 0.000 0.192 0.603 1.242

TeAs + AsI 3.2Å 0.843 0.329 0.043 0.000 0.201 0.619 1.275
TeAs + TeI 2.7Å 0.534 0.153 -0.038 0.000 0.308 0.859 1.608
VAs + TeGa 2.5Å 0.837 0.319 0.051 0.000 0.188 0.615 0.250

4.7Å 0.978 0.425 0.095 0.000 0.122 0.429 0.825
6.1Å 1.140 0.357 0.086 0.000 -0.167 0.299 0.045
7.3Å 1.002 0.439 0.096 0.000 0.115 0.401 0.813

2TeAs 4.7Å 0.444 0.077 -0.070 0.000 0.293 0.793 1.476
5.6Å 0.432 0.077 -0.069 0.000 0.290 0.793 1.467
6.8Å 0.435 0.063 -0.077 0.000 0.294 0.799 1.500
7.9Å 0.429 0.073 -0.073 0.000 0.295 0.797 1.479

VGa + 2TeAs - 0.819 0.339 0.067 0.000 0.160 0.543 1.149
2VGa + TeAs - 1.080 0.507 0.174 0.000 0.053 0.171 0.681
VGa + 2TeI[Te−Ga] - 0.444 0.073 -0.075 0.000 0.316 0.901 1.773
VGa + TeAs + TeI[Te−Ga] 2.6Å 0.465 0.081 -0.080 0.000 0.312 0.929 1.755

4.4Å 0.531 0.111 -0.056 0.000 0.306 0.901 1.647
5.9Å 0.528 0.149 -0.080 0.000 0.291 0.813 1.632
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Table A-3. Transition levels (ϵ(qa/qb)) in eV for Te doped GaAs defects. Calculated with
Equation 2-22.

Defect Distance Charge (q)
(+3/+2) (+2/+1) (+1/0) (0/-1) (-1/-2) (-2/-3)

VGa - -1.05 -0.71 -0.36 -0.03 0.32 0.67
VAs - -0.24 -0.40 0.26 0.46 0.71 1.04
GaI - -0.72 -0.39 1.02 1.46 1.78 2.06
AsI - -0.14 -0.47 0.86 1.01 1.57 1.94
TeI[Te−Ga] - 0.00 0.38 0.74 1.07 1.44 1.92
TeI[Te−As] - -0.67 -0.29 0.29 1.32 1.70 1.98
TeAs - -0.79 -0.43 1.05 1.46 1.76 2.03
TeGa - -0.61 -0.10 0.91 1.32 0.74 1.98
VGa + TeAs 2.5Å -0.94 -0.61 -0.22 0.11 0.47 1.76

4.7Å -0.89 -0.55 -0.19 0.14 0.51 1.77
6.1Å -0.89 -0.53 -0.17 0.17 0.51 1.79
7.3Å -0.95 -0.61 -0.17 0.13 0.46 1.75

VGa + TeI[Te−X] 2.5Å -0.62 0.17 0.27 0.84 1.56 1.96
2.8Å -0.61 -0.10 0.85 0.96 1.23 1.38
4.7Å -0.54 -0.08 0.99 1.36 0.90 1.93
4.9Å -0.68 -0.55 -0.24 0.11 0.00 0.67
6.1Å 2.17 -0.48 -0.18 0.18 0.99 1.18
6.3Å -0.84 -0.52 -0.20 0.16 0.76 0.67

TeAs +GaI 2.5Å -0.28 0.89 1.25 1.55 1.79 2.03
4.7Å -0.22 0.94 1.32 1.63 1.91 1.77
6.1Å -0.20 0.89 1.27 1.58 1.86 2.11
7.3Å -0.19 0.94 1.33 1.63 1.91 2.16

TeAs + AsI 3.2Å -0.55 0.79 1.03 1.30 1.66 1.95
TeAs + TeI 2.7Å -0.51 -0.10 1.03 1.37 1.61 1.96
VAs + TeGa 2.5Å -1.06 -0.75 -0.34 0.05 0.37 1.82

4.7Å -0.12 -0.07 0.19 0.40 0.69 1.14
6.1Å -0.54 0.42 -0.09 0.59 0.89 0.60
7.3Å -0.16 -0.03 0.20 0.40 0.69 1.17

2TeAs 4.7Å -0.64 0.84 1.24 1.55 1.82 2.08
5.6Å -0.63 0.83 1.23 1.54 1.82 2.07
6.8Å -0.66 0.84 1.24 1.54 1.82 2.09
7.9Å -0.64 0.83 1.22 1.53 1.82 2.08

VGa + 2TeAs - -0.89 -0.55 -0.21 0.17 1.53 1.91
2VGa + TeAs - -0.92 -0.13 -0.35 -0.30 0.52 0.60
VGa + 2TeI[Te−Ga] - -0.33 0.03 0.86 0.60 1.63 2.02
VGa + TeAs +
TeI[Te−Ga]

2.6Å -0.62 0.31 0.34 1.24 1.62 0.71

4.4Å -0.71 0.03 0.52 1.32 1.73 2.05
5.9Å -0.45 0.88 0.66 1.13 1.01 1.68

149



APPENDIX B
ZR-H SUPPLEMENTAL DATA

Table B-1. Characteristics of calculated Cluster Expansions.
Characteristic hcp fct (c/a>1) fct (c/a>1) fcc fcc fct (c/a<1)

tet only oct + tet 10% strain 4% strain
No. of structures 181 37 107 137 78 49
No. point clusters 1 1 2 1 1 1
No. pairs 11 4 8 34 18 12
No. triplets - - 11 16 16 1
No. quadruplets - - 3 17 17 1
CV score
(meV/atom)

6.3 17.2 23.3 4 4.2 9.4
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Figure B-1. Predicted, and fitted formation energies (eV/H site), referenced to fct (c/a>1)-Zr
and fct (c/a>1)-ZrH2, from the fct (c/a>1) tetrahedral interstitials only lattice
model fitted CE. A) Shows the energies predicted by the CE, blue circles, and
energies fitted by the CE, orange crosses. B) Shows the formation energies
calculated by VASP, green circles, and the final ground states, red crosses.
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Figure B-2. Formation energies calculated with VASP and residuals of the fit of the fct
(c/a>1) tetrahedral interstitials only lattice model CE. A) Compares the VASP
formation energies, green circles, with the CE fitted energies, orange crosses. B)
Shows the ECI decreases as the number of sites in the clusters increases.
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Figure B-3. Residuals of the fit and fitted vs calculated formation energies of the fct (c/a>1)
tetrahedral interstitials only lattice model CE. A) Shows the spread of the residuals
of the fit range over 0.07 eV/H site. B) Compares the fitted formation energies
(eV/H sites) to the formation energies (eV/H site) calculated by VASP.
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Figure B-4. Predicted, and fitted formation energies (eV/H site), referenced to fcc-Zr and
fcc-ZrH2, from the fcc-lattice model fitted CE limited to 4% strain. A) Shows the
energies predicted by the CE, blue circles, and energies fitted by the CE, orange
crosses. B) Shows the formation energies calculated by VASP, green circles, and
the final ground states, red crosses.
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Figure B-5. Formation energies calculated with VASP and residuals of the fit of the fcc-lattice
model fitted CE limited to 4% strain. A) Compares the VASP formation energies,
green circles, with the CE fitted energies, orange crosses. B) Shows the ECI
decreases as the number of sites in the clusters increases.
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Figure B-6. Residuals of the fit and fitted vs calculated formation energies of the fcc-lattice
model fitted CE limited to 4% strain. A) Shows the spread of the residuals of the
fit range over 0.008 eV/H site. B) Compares the fitted formation energies (eV/H
sites) to the formation energies (eV/H site) calculated by VASP.
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Figure B-7. Predicted, and fitted formation energies (eV/H site), referenced to fct (c/a<1)-Zr
and fct (c/a<1)-ZrH2, from the fct (c/a<1)-lattice model fitted CE. A) Shows the
energies predicted by the CE, blue circles, and energies fitted by the CE, orange
crosses. B) Shows the formation energies calculated by VASP, green circles, and
the final ground states, red crosses.
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Figure B-8. Formation energies calculated with VASP and residuals of the fit of the fct
(c/a<1)-lattice model CE. A) Compares the VASP formation energies, green
circles, with the CE fitted energies, orange crosses. B) Shows the ECI decreases as
the number of sites in the clusters increases.

158



 

Figure B-9. Residuals of the fit and fitted vs calculated formation energies of the fct
(c/a<1)-lattice model CE. A) Shows the spread of the residuals of the fit range
over 0.03 eV/H site. B) Compares the fitted formation energies (eV/H sites) to
the formation energies (eV/H site) calculated by VASP.
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Table B-2. Cluster and ECI information for hcp-lattice model.
Number of atoms in
cluster

Diameter of cluster (Å) No. of equivalent configurations ECI

0 0.000000 1 0.095310
1 0.000000 4 0.009733
2 1.328847 2 0.054111
2 2.301632 6 -0.001488
2 3.254999 12 0.000317
2 3.255004 12 -0.000895
2 3.515805 12 -0.002528
2 3.986542 2 -0.018184
2 3.986548 6 -0.008044
2 4.407288 6 -0.003289
2 4.603267 12 -0.001434
2 5.146607 12 0.000217
2 5.146611 12 -0.003207

Table B-3. Cluster and ECI information for fct (c/a>1) tetrahedral interstitials only-lattice
model.

Number of atoms in
cluster

Diameter of cluster (Å) No. of equivalent configurations ECI

0 0.000000 1 0.140211
1 0.000000 4 0.008801
2 2.289581 8 -0.001264
2 2.503157 4 -0.025128
2 3.237956 8 -0.001464
2 3.392341 16 0.001099
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Table B-4. Cluster and ECI information for fct (c/a>1) tetrahedral and octrahedral interstitials
lattice model.

Number of atoms in
cluster

Diameter of cluster (Å) No. of equivalent configurations ECI

0 0.000000 1 -0.876448
1 0.000000 2 0.050869
1 0.000000 4 0.124727
2 2.046348 16 0.039290
2 2.289581 8 -0.002104
2 2.503157 4 0.012310
2 3.237956 8 0.010684
2 3.237956 4 0.007885
2 3.392341 8 0.002547
2 3.392341 16 0.009042
2 3.830391 32 -0.002640
3 2.289581 16 0.001640
3 2.503157 8 -0.017599
3 3.237956 8 -0.015600
3 3.237956 16 -0.005859
3 3.237956 8 -0.000480
3 3.392341 16 -0.001645
3 3.392341 16 -0.004034
3 3.392341 16 -0.007796
3 3.392341 32 -0.000489
3 3.392341 16 -0.003174
3 3.392341 16 0.000000
4 3.237956 16 0.006955
4 3.237956 4 0.000549
4 3.237956 4 0.001224
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Table B-5. Cluster and ECI information for fcc-lattice model limited to 10% strain.
Number of atoms in
cluster

Diameter of cluster (Å) No. of equivalent configurations ECI

0 0.000000 1 0.065134
1 0.000000 2 0.032384
2 2.301633 6 0.000724
2 3.255000 12 0.000899
2 3.986544 4 -0.011100
2 3.986544 4 -0.004764
2 4.603265 6 -0.002590
2 5.146607 24 -0.000510
2 5.637825 24 -0.000507
2 6.510000 12 -0.001784
2 6.904898 12 0.001528
2 6.904898 12 -0.000490
2 6.904898 6 -0.000171
2 7.278401 24 -0.000711
2 7.633651 12 -0.000094
2 7.633651 12 0.000293
2 7.973089 8 -0.000357
2 8.298654 24 -0.000111
2 8.611920 48 -0.000718
2 9.206530 6 -0.000369
2 9.489874 12 -0.000416
2 9.489874 24 -0.000500
2 9.489874 12 0.000240
2 9.765000 24 -0.000423
2 9.765000 12 0.000019
2 10.032583 12 -0.002135
2 10.032583 12 0.000509
2 10.293213 24 0.000550
2 10.547405 24 0.000296
2 10.547405 24 -0.001337
2 10.795613 24 0.001409
2 11.275650 24 0.001073
2 11.508163 24 0.000321
2 11.508163 6 0.001992
2 11.736069 48 -0.000028
2 11.736069 24 0.001332
3 3.255000 24 -0.000258
3 3.255000 8 0.000169
3 3.255000 8 0.000000
3 3.986544 24 -0.000193

Continued on next page
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Table B-5. Continued
Number of atoms in
cluster

Diameter of cluster (Å) No. of equivalent configurations ECI

3 3.986544 24 -0.000155
3 4.603265 6 0.000677
3 4.603265 24 -0.000176
3 4.603265 24 0.000407
3 5.146607 48 0.000204
3 5.146607 48 0.000012
3 5.146607 48 -0.001004
3 5.146607 24 -0.000631
3 5.146607 48 -0.000131
3 5.146607 24 0.000140
3 5.146607 24 0.000208
3 5.146607 24 -0.000218
4 3.255000 6 -0.001207
4 3.255000 8 -0.000112
4 3.255000 2 -0.002589
4 3.255000 8 -0.000056
4 3.255000 2 0.000000
4 3.986544 24 0.000326
4 3.986544 24 0.000009
4 3.986544 6 0.001374
4 3.986544 24 -0.000153
4 3.986544 24 -0.000025
4 3.986544 6 0.000359
4 4.603265 24 -0.000219
4 4.603265 24 0.000586
4 4.603265 6 -0.000429
4 4.603265 24 0.000267
4 4.603265 48 0.000407
4 4.603265 12 -0.000016
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Table B-6. Cluster and ECI information for fcc-lattice model limited to 4% strain.
Number of atoms in
cluster

Diameter of cluster (Å) No. of equivalent configurations ECI

0 0.000000 1 0.064003
1 0.000000 2 0.034054
2 2.301633 6 0.001302
2 3.255000 12 0.001139
2 3.986544 4 -0.016544
2 3.986544 4 -0.004328
2 4.603265 6 -0.000107
2 5.146607 24 -0.000502
2 5.637825 24 0.000029
2 6.510000 12 0.000644
2 6.904898 12 0.000790
2 6.904898 12 -0.000365
2 6.904898 6 -0.000487
2 7.278401 24 -0.000096
2 7.633651 12 0.000112
2 7.633651 12 0.000454
2 7.973089 8 -0.000484
2 8.298654 24 -0.000557
2 8.611920 48 -0.000211
2 9.206530 6 -0.000084
3 3.255000 24 -0.000017
3 3.255000 8 -0.000693
3 3.255000 8 0.000000
3 3.986544 24 -0.000703
3 3.986544 24 -0.000524
3 4.603265 6 0.001163
3 4.603265 24 -0.000095
3 4.603265 24 0.000192
3 5.146607 48 0.000135
3 5.146607 48 0.000040
3 5.146607 48 -0.000933
3 5.146607 24 -0.000487
3 5.146607 48 0.000059
3 5.146607 24 -0.000015
3 5.146607 24 0.000314
3 5.146607 24 -0.000175
4 3.255000 6 -0.000553
4 3.255000 8 0.000472
4 3.255000 2 -0.002256
4 3.255000 8 -0.000177

Continued on next page
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Table B-6. Continued
Number of atoms in
cluster

Diameter of cluster (Å) No. of equivalent configurations ECI

4 3.255000 2 0.000000
4 3.986544 24 0.000001
4 3.986544 24 -0.000167
4 3.986544 6 0.001665
4 3.986544 24 -0.000225
4 3.986544 24 -0.000019
4 3.986544 6 0.000490
4 4.603265 24 0.000096
4 4.603265 24 0.000336
4 4.603265 6 -0.000511
4 4.603265 24 0.000328
4 4.603265 48 0.000243
4 4.603265 12 -0.000123

Table B-7. Cluster and ECI information for fct (c/a<1) lattice model.
Number of atoms in
cluster

Diameter of cluster (Å) No. of equivalent configurations ECI

0 0.000000 1 0.076877
1 0.000000 2 0.024145
2 2.226356 2 0.008221
2 2.504477 4 -0.002833
2 3.350980 8 -0.001483
2 3.541870 4 0.005364
2 4.183476 4 -0.010424
2 4.183476 4 -0.002759
2 4.452711 2 0.000715
2 5.008955 4 0.002747
2 5.108719 8 -0.001564
2 5.481450 8 0.000760
2 5.600185 8 -0.002179
2 5.689589 8 -0.002324
3 3.350980 16 -0.002981
4 3.350980 4 -0.002314
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